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Abstract: The advent of smart mobility and the proliferation of connected vehicles have intro- 8

duced new challenges in securing Vehicular Controller Area Networks (CANs) against cyber 9

threats. This paper proposes an innovative machine intelligence paradigm for sustainable intru- 10

sion detection within vehicular networks. We present a Deep Neural Network (DNN) model that 11

effectively classifies CAN traffic into categories, including Normal, Denial of Service (DoS), 12

Gear Attack (Spoofing), RPM Attack (Spoofing), and Fuzzy Attack. The DNN's architecture is 13

designed to learn and adapt to the dynamic nature of vehicular communications, enhancing its 14

ability to detect network intrusions. The study encompasses an inclusive exploration of the CAN 15

bus architecture, message data format, and related security vulnerabilities to provide a solid 16

foundation for intrusion detection. Our methodology employs mathematical representations of 17

the DNN model, offering insight into its training process. Visualizations of results, such as con- 18

fusion matrices, ROC-AUC curves, T-SNE plots, and SHAP explanations, provide a holistic view 19

of the model's performance and offer valuable insights for system refinement. By bridging the 20

gap between machine intelligence and vehicular security, this research contributes to the ongo- 21

ing efforts to fortify critical infrastructure, ensuring the reliability and sustainability of vehicular 22

networks in the era of connected and autonomous vehicles. 23

Keywords: Machine Intelligence, Intrusion Detection, Vehicular Controller Area Networks, 24

Deep Neural Network, Cybersecurity, CAN Bus, Network Security, Smart Mobility, Automotive 25

Technology, Threat Classification. 26

1. Introduction 27

In the era of rapidly advancing technology, the integration of smart vehicles into our 28

daily lives has revolutionized the way we commute, communicate, and experience 29

transportation. Vehicular Controller Area Networks (CANs) lie at the heart of this 30

transformation, serving as the nervous system that enables seamless communication and 31

coordination among various electronic control units within modern vehicles. However, as 32

the automotive industry embraces connectivity and automation, the susceptibility of these 33

networks to cyber threats becomes an increasingly critical concern [1-2]. 34
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The automotive ecosystem, once confined to mechanical engineering, has now 1

evolved into a sophisticated fusion of hardware and software components. While this 2

evolution has brought unprecedented convenience and efficiency, it has also exposed 3

vehicles to a new realm of cybersecurity challenges [4]. The proliferation of smart features, 4

Internet of Things (IoT) integration, and the prospect of autonomous driving have 5

expanded the attack surface, making vehicular networks a prime target for malicious actors 6

seeking to compromise safety, privacy, and functionality [3-5]. 7

8

In response to these emerging threats, traditional security mechanisms have proven 9

inadequate. The conventional firewall and signature-based intrusion detection systems 10

(IDS) struggle to keep pace with the evolving tactics and techniques of cyber adversaries. 11

To address this gap, an innovative approach is required, one that not only offers robust 12

security but also aligns with the broader goals of sustainability and environmental 13

responsibility [6-7]. This paper introduces a novel paradigm for intrusion detection in 14

Vehicular CAN—leveraging the power of Machine Intelligence to create a sustainable and 15

adaptive defense mechanism. By combining cutting-edge machine learning and artificial 16

intelligence techniques with a deep understanding of automotive systems, we propose a 17

holistic framework capable of identifying and mitigating intrusions while minimizing false 18

positives and reducing energy consumption [8-10]. 19

20

Our paper is structured as follows: In Section 2, we provide an overview of the exist- 21

ing research in vehicular network security. Section 3 outlines our innovative machine intel- 22

ligence framework for intrusion detection. In Section 4, we describe the setup and key pa- 23

rameters used in our experiments. Section 5 presents a thorough analysis of the experi- 24

mental outcomes and engages in a comprehensive discussion. Finally, in Section 6, we sum- 25

marize our findings and outline future research directions. Table 1 outlines the content of 26

each section. 27

28

  Table 1: Paper Structure and Section Descriptions 29

Section Description 

2. Related Work Review of related literature and research 

3. Methodology
Presentation of our machine intelligence framework including 
algorithms, techniques, and implementation details 

4. Experimental
Configurations

Details on the experimental setup, datasets, and parameters 

5. Results and
Discussion

In-depth analysis of experimental results, including 
quantitative and qualitative insights 

6. Conclusion
Summary of key findings, contributions, and future research 
directions 

30

2. Related Works 31
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In this section, we embark on a journey through the existing body of research, seeking 1 

to understand the current state-of-the-art in intrusion detection for Vehicular CANs. By 2 

examining the work of pioneers and innovators in the field, we aim to identify key chal- 3 

lenges, trends, and insights that lay the foundation for our proposed sustainable intrusion 4 

detection framework. Hossain et al. [11] introduced a Long Short-Term Memory-Based 5 

Intrusion Detection System for in-Vehicle Controller Area Network Bus. Their work is 6 

significant as it addresses the critical issue of security within the context of in-vehicle com- 7 

munication networks. By implementing Long Short-Term Memory (LSTM) networks, 8 

they provided a promising approach to identifying and preventing intrusions within 9 

CANs. This research contributes to the field by presenting an effective method to enhance 10 

the security of in-vehicle networks, which is of paramount importance in the era of con- 11 

nected and autonomous vehicles. Mehedi et al. [12] presented a Deep Transfer Learning 12 

Based Intrusion Detection System for Electric Vehicular Networks. Their approach, based 13 

on deep transfer learning, is of great significance due to the growing prevalence of electric 14 

vehicles. The study offers a solution to the unique security challenges posed by these ve- 15 

hicles, emphasizing the adaptability and transferability of deep learning models. Tomlin- 16 

son et al. [13] focused on advancements in intrusion detection methods for the Automo- 17 

tive Controller Area Network. Their work is vital as it recognizes the need for robust se- 18 

curity in automotive systems. By exploring the viability of intrusion detection solutions, 19 

they contribute to the development of security measures in automotive communication 20 

networks, safeguarding the reliability and safety of modern vehicles. Sharmin and Mansor 21 

[14] explored the application of machine learning for Intrusion Detection on the In-Vehicle 22 

Network. Their research was relevant in light of the increasing integration of machine 23 

learning techniques into network security. By applying machine learning to in-vehicle 24 

networks, the study highlighted the potential for more dynamic and adaptable intrusion 25 

detection systems, offering a valuable contribution to the evolving landscape of network 26 

security. Shahriar et al. [15] introduced CANShield, a Deep Learning-Based Intrusion De- 27 

tection Framework for CANs at the Signal-Level. This approach is noteworthy as it oper- 28 

ates at the signal level, offering fine-grained security. The utilization of deep learning 29 

methods further enhances the precision of intrusion detection in CANs, making this re- 30 

search an important contribution to ensuring the integrity of automotive communication 31 

systems.  Olufowobi et al. [16] developed Saiducant, which is a Specification-Based Auto- 32 

motive Intrusion Detection System Using Controller Area Network (CAN) Timing. Their 33 

work was significant as it introduces a specification-based approach to intrusion detec- 34 

tion. By considering the timing aspects of CAN messages, their study offered a method 35 

that complements existing security measures, enhancing the overall security posture of 36 

automotive networks. Nam et al. [17] proposed an Intrusion Detection Method Using Bi- 37 

Directional GPT for in-Vehicle CANs. By leveraging the capabilities of GPT-based models, 38 

this research opens new avenues in natural language processing and machine learning for 39 

intrusion detection. The approach is innovative in its bi-directional use of GPT models, 40 

making it a valuable contribution to in-vehicle network security.  Alfardus and Rawat [18] 41 

presented an Intrusion Detection System for CAN Bus In-Vehicle Network Based on Ma- 42 

chine Learning Algorithms. Their work is crucial in the context of in-vehicle network se- 43 

curity, as it emphasizes the utilization of machine learning algorithms to safeguard CANs. 44 



SMIJ 2023, Vol. 4. 4 of 12 
 

 

This study underscores the adaptability and efficiency of machine learning in intrusion 1 

detection, making it a relevant addition to the field. Islam et al. [19] introduced a Graph- 2 

Based Intrusion Detection System for CANs. Their research offered a unique approach by 3 

using graph-based techniques for intrusion detection. By modeling the network as a graph 4 

and analyzing its structure, their study contributes to the development of novel methods 5 

for enhancing the security of CANs. 6 

3. Methodology 7 

In this section, we delve into the core of our research, unveiling the intricacies of the 8 

methodology that underpins our proposed sustainable intrusion detection framework for 9 

Vehicular Controller Area Networks (CANs) using a machine intelligence paradigm. 10 

3.1. System Architecture  11 

The Controller Area Network (CAN) bus architecture serves as the foundational 12 

communication framework within Vehicular Controller Area Networks. It's characterized 13 

by a robust and distributed structure where multiple electronic control units (ECUs) in- 14 

terconnect through a shared bus. This architecture enables real-time, low-latency commu- 15 

nication among ECUs, facilitating critical functions such as engine control, safety systems, 16 

and infotainment. The CAN bus relies on a two-wire differential pair to transmit mes- 17 

sages, with a dominant "0" and a recessive "1" encoding scheme. Messages are broadcast 18 

to all ECUs on the network, and each ECU filters messages based on their unique identi- 19 

fiers. However, this open and decentralized nature of the CAN bus also exposes it to po- 20 

tential security vulnerabilities, including message spoofing, unauthorized access, and de- 21 

nial-of-service (DoS) attacks. Understanding the intricacies of the CAN bus architecture, 22 

Figure 1: CAN Bus Architecture and CAN Message Format 
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its message format, and associated security risks is fundamental to the development of an 1 

effective intrusion detection system within vehicular networks. 2 

 3 

Messages within the CAN bus are structured with specific components, including an 4 

identifier, data bytes, and control bits. The identifier, often referred to as the CAN ID, 5 

specifies the message's priority and source ECU. Data bytes contain the actual information 6 

being transmitted, ranging from 0 to 8 bytes in length, with each byte encoding critical 7 

vehicle data. Control bits include elements like the identifier extension bit (IDE) and the 8 

remote transmission request (RTR) bit, which affect message transmission and interpreta- 9 

tion. This standardized data format ensures uniform communication across the network. 10 

However, it also introduces potential vulnerabilities, as attackers can manipulate message 11 

content or impersonate legitimate ECUs to send malicious messages, compromising ve- 12 

hicular network security (See Figure 1). 13 

 14 

The CAN bus, while efficient for real-time communication, faces several security vul- 15 

nerabilities that demand attention in the context of intrusion detection. Message spoofing, 16 

where attackers impersonate trusted ECUs by manipulating CAN IDs, can lead to unau- 17 

thorized control of critical vehicle functions. Additionally, unauthorized access may occur 18 

when malicious actors gain entry to the network, potentially compromising its integrity. 19 

Denial-of-service (DoS) attacks pose another threat, where attackers flood the bus with 20 

excessive messages, disrupting normal communication and causing potential safety haz- 21 

ards. The open nature of the CAN bus architecture further exacerbates these vulnerabili- 22 

ties, necessitating the implementation of robust intrusion detection mechanisms to safe- 23 

guard vehicular networks against cyber threats. 24 

 25 

3.2. Machine Intelligence Model 26 

The process of classifying CAN traffic into distinct attack categories involves the con- 27 

struction of a Deep Neural Network (DNN) tailored to the unique characteristics of vehic- 28 

ular networks. A DNN is a powerful machine learning architecture consisting of multiple 29 

interconnected layers of artificial neurons. It excels at learning complex patterns and rela- 30 

tionships within data, making it well-suited for intrusion detection tasks. Mathematically, 31 

the DNN can be represented as follows: 32 

 33 

Let X represent the input data, which consists of CAN traffic attributes, and Y repre- 34 

sent the output, which corresponds to the attack categories (Normal, DoS, Gear Attack, 35 

RPM Attack, Fuzzy Attack). The DNN comprises multiple hidden layers (commonly re- 36 

ferred to as H) connected through weighted connections (represented as W) and activated 37 

by nonlinear functions (often denoted as σ). The mathematical representation of a neuron 38 

in a hidden layer can be expressed as follows: 39 

𝑍[ℎ] = 𝑊 [ℎ]𝑋 + 𝑏[ℎ]

𝐴[ℎ] = 𝜎(𝑍[ℎ])
 (1) 

where 𝑍[ℎ] is the weighted sum of inputs in layer ℎ. 𝐴[ℎ] is the activation output of 40 

the neurons in layer ℎ. 𝑊[ℎ] represents the weight matrix for layer ℎ. 𝑏[ℎ] is the bias term 41 

for layer ℎ. 𝜎 denotes the activation function (e.g, ReLU, Sigmoid) applied element-wise 42 

to 𝑍[ℎ]. 43 
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The DNN is trained using a labeled dataset that associates input CAN traffic samples 1 

(X) with their corresponding attack categories (Y). The training process aims to optimize 2 

the weight and bias parameters to minimize a loss function (often represented as L) that 3 

quantifies the difference between predicted and actual attack categories: 4 

𝐿 = −
1

𝑛
∑(𝑡𝑖𝑙𝑜𝑔𝑦𝑖 + (1 − 𝑡𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖))

𝑛

𝑘=1

, (2) 

Where 𝑦𝑖  represents the predicted attack categories produced by the DNN. Through 5 

an iterative process known as backpropagation, the DNN adjusts its parameters using 6 

optimization techniques (e.g., stochastic gradient descent) to minimize the loss function. 7 

Once trained, the DNN can classify incoming CAN traffic into one of the predefined cat- 8 

egories, effectively detecting and categorizing network intrusions. 9 

4. Experimental Design 10 

In this section, we embark on a journey through the practical implementation of our 11 

sustainable intrusion detection framework in Vehicular CANs. Having elucidated the 12 

methodology in the previous section, we now shift our focus to the real-world deployment 13 

and assessment of our innovative system. We detail the experimental setups, datasets, and 14 

configurations that were meticulously designed to evaluate the performance, robustness, 15 

and sustainability of our intrusion detection solution. For the execution of our experi- 16 

ments, a dedicated and meticulously designed implementation setup was employed. The 17 

hardware specifications included a high-performance server equipped with a multi-core 18 

processor (Intel Core i7, 3.5 GHz), ample RAM (32 GB DDR4), and solid-state drives 19 

(SSDs) for rapid data access. This robust hardware infrastructure ensured the computa- 20 

tional capacity required for the intricate tasks of intrusion detection and analysis. The 21 

server ran on a Linux-based operating system, Ubuntu 20.04 LTS, providing a stable and 22 

well-supported platform for our experiments. To harness the power of machine learning 23 

and deep learning techniques, we employed open-source libraries and frameworks, in- 24 

cluding TensorFlow, and Scikit-learn, for model development and evaluation. Addition- 25 

ally, for data preprocessing, visualization, and analysis, we utilized Python programming 26 

with Pandas, Matplotlib, and Seaborn. This carefully orchestrated hardware and software 27 

ensemble formed the foundation of our experimental environment, enabling us to rigor- 28 

ously evaluate the performance of our sustainable intrusion detection system in Vehicular 29 

CAN. Our study employs a Car-Hacking dataset, the distribution of which is meticulously 30 

outlined in Table 2. This dataset serves as the foundation of our experimental endeavors, 31 

enabling us to delve into the intricate realm of car security and vulnerability analysis. With 32 

the comprehensive insights provided by Table 2, we are well-equipped to investigate and 33 

address the critical challenges and threats associated with automotive cybersecurity [20]. 34 

 35 

Table 2: Summary of Attributes of Car-Hacking Dataset. 36 

Attack Type Normal 

Denial of 

Service 

(DoS) 

Gear Attack 

(Spoofing) 

RPM Attack 

(Spoofing) 
Fuzzy Attack 

Timestamp Interval N/A 
0.3 millisec-

onds 
1 millisecond 1 millisecond 

0.5 millisec-

onds 

CAN ID Pattern 
Random Hex-

adecimal 

Dominant 

"0000" 

Random Hex-

adecimal 

Random Hex-

adecimal 

Random Hex-

adecimal 
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Data Byte Range 
0–8 (all 8 

bytes) 

0–8 (all 8 

bytes) 

0–8 (all 8 

bytes) 

0–8 (all 8 

bytes) 

0–8 (all 8 

bytes) 

Data Pattern Varied Varied Varied Varied Varied 

Sample Class Legitimate Malicious Malicious Malicious Malicious 

Number of Samples 988872 587521 597252 654897 491847 

5.  Results Discussion 1 

Having laid the foundation of our methodology and detailed the experimental con- 2 

figurations, we now embark on the crucial phase of our research journey—presenting the 3 

results and engaging in an insightful discussion. In this section, we unveil the outcomes 4 

of our experiments, showcasing the performance and efficacy of our sustainable intrusion 5 

detection framework within Vehicular CANs. Through a meticulous analysis of these re- 6 

sults, we aim to shed light on the strengths, limitations, and implications of our approach. 7 

 8 

Figure 2 presents a visual representation of our model's performance through a con- 9 

fusion matrix. This matrix provides a comprehensive snapshot of the classification results, 10 

categorizing instances into true positives (TP), true negatives (TN), false positives (FP), 11 

and false negatives (FN). The diagonal elements (TP and TN) represent correctly classified 12 

instances, while off-diagonal elements (FP and FN) indicate misclassifications. This visu- 13 

alization offers critical insights into the effectiveness of our model. We observe a substan- 14 

tial number of true positives, demonstrating the system's capability to accurately identify 15 

malicious intrusions, a fundamental objective in enhancing vehicular network security. 16 

Conversely, the occurrence of false positives implies instances where benign activities 17 

were incorrectly flagged as malicious. This aspect warrants further investigation to fine- 18 

tune the model's threshold for alarm triggering. The presence of false negatives indicates 19 

instances where actual attacks were missed by the system, signaling the need for model 20 

enhancements to bolster its sensitivity.  21 

 22 

Figure 3 showcases the Receiver Operating Characteristic (ROC) curve along with 23 

the Area Under the Curve (AUC) metric, offering a comprehensive evaluation of our 24 

Figure 2: Confusion Matrix Illustrating Model 

Classification Performance. 

Figure 3: ROC-AUC Curve Demonstrating Discriminatory 

Power of the Model. 
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intrusion detection model's performance. The ROC curve visually illustrates the trade-off 1 

between the true positive rate (sensitivity) and the false positive rate (1-specificity) across 2 

varying classification thresholds. A well-defined curve, rising sharply toward the upper- 3 

left corner, signifies a model with superior discriminatory power. The AUC quantifies the 4 

model's ability to distinguish between benign and malicious instances, with a higher AUC 5 

indicating better discrimination. In our ROC-AUC curve, we observe a graceful curve that 6 

significantly extends towards the top-left corner, indicative of our model's ability to effec- 7 

tively separate normal network activity from intrusion attempts. Moreover, the AUC met- 8 

ric registers a commendable value, reinforcing the model's strong discriminatory capabil- 9 

ities. These results underscore the model's potential for robust intrusion detection within 10 

Vehicular Controller Area Networks. However, further analysis of the ROC curve sug- 11 

gests potential areas for fine-tuning the model's operating threshold to optimize its per- 12 

formance. This visual assessment not only validates the efficacy of our approach but also 13 

provides actionable insights for potential enhancements, ensuring the continued security 14 

and resilience of vehicular networks. 15 

 16 

Figure 4: Learning Curves Displaying Model Training Dynamics and Generalization. 

Figure 5: T-SNE Plot Visualizing Model Predictions 

and Data Clusters. 
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In Figure 4, we present the learning curves that offer valuable insights into the per- 1 

formance and training dynamics of our intrusion detection model. Learning curves dis- 2 

play how key performance metrics, namely accuracy, and loss, evolve as the model un- 3 

dergoes training over multiple epochs. The training curve represents the model's perfor- 4 

mance on the training dataset, while the validation curve reflects its performance on a 5 

separate validation dataset. A close examination of these curves provides a nuanced un- 6 

derstanding of the model's learning process. Initially, during the early epochs, we observe 7 

a convergence of the training and validation curves, indicating that the model rapidly 8 

learns to generalize from the training data. However, as training progresses, a divergence 9 

may emerge, where the training curve continues to improve while the validation curve 10 

stabilizes or slightly regresses. This divergence suggests potential overfitting, prompting 11 

us to consider regularization techniques or adjustments to the model architecture. Con- 12 

versely, if both curves continue to improve without significant divergence, it reflects the 13 

model's ability to generalize effectively. 14 

In Figure 5, we present a T-distributed Stochastic Neighbor Embedding (T-SNE) plot 15 

as an insightful visualization of our model's predictions. T-SNE is a powerful dimension- 16 

ality reduction technique that allows us to visualize high-dimensional data in a two-di- 17 

mensional space while preserving the inherent structure and relationships among data 18 

points. Each point on the plot represents a data instance, color-coded based on the model's 19 

prediction—benign or malicious. The T-SNE plot reveals clusters and patterns within the 20 

data, offering valuable insights into how well our intrusion detection system discerns be- 21 

tween different classes of network traffic. Clusters of points closely aligned with one an- 22 

other indicate that the model has successfully grouped similar instances together, reflect- 23 

ing its ability to distinguish between benign and malicious activities. Conversely, points 24 

that are more scattered suggest potential areas of improvement where the model's predic- 25 

tions may be less consistent. This visualization serves as a powerful diagnostic tool, help- 26 

ing us gain a deeper understanding of our model's performance beyond traditional accu- 27 

racy metrics. It enables us to identify potential areas for refinement and offers a holistic 28 

view of the model's effectiveness in securing Vehicular Controller Area Networks. 29 

 30 

Figure 6 offers a compelling insight into our model's predictive decisions through 31 

SHAP (SHapley Additive exPlanations) explanations. SHAP values provide a comprehen- 32 

sive view of feature importance, shedding light on the factors driving individual predic- 33 

tions. Each point on the plot corresponds to a specific prediction instance, and the hori- 34 

zontal position of the points indicates the SHAP value's magnitude, with positive values 35 

signifying features that push the prediction towards the 'malicious' class and negative 36 

values indicating features favoring the 'benign' class. By visualizing these SHAP explana- 37 

tions, we gain a deeper understanding of the model's decision-making process. Notably, 38 

instances where SHAP values exhibit significant deviations from zero signify strong con- 39 

tributing factors, offering interpretability into why the model classified a given instance 40 

as benign or malicious. This visualization not only enhances model transparency but also 41 

empowers us to identify and validate the critical features in intrusion detection, thereby 42 

strengthening our ability to secure Vehicular CAN. 43 
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6. Conclusions 1 

This paper presents a groundbreaking approach to bolster the security of Vehicular 2 

Controller Area Networks (CANs) through the innovative integration of machine intelli- 3 

gence. Our research has showcased the development of a deep neural network (DNN) 4 

model that effectively classifies CAN traffic into multiple categories, including Normal, 5 

Denial of Service (DoS), Gear Attack (Spoofing), RPM Attack (Spoofing), and Fuzzy At- 6 

tack. By leveraging the power of machine learning, we have demonstrated the model's 7 

robustness in detecting and categorizing network intrusions, thus enhancing the resilience 8 

of vehicular networks in the face of evolving cyber threats. Additionally, through the vis- 9 

ualization of results, including confusion matrices, ROC-AUC curves, T-SNE plots, and 10 

SHAP explanations, we have provided valuable insights into the model's performance, 11 

strengths, and areas for improvement. 12 

 13 

The implications of our research extend beyond vehicular networks to broader ap- 14 

plications in cybersecurity. This work contributes to the ongoing discourse on safeguard- 15 

ing critical infrastructure by harnessing the potential of machine intelligence. As we look 16 

toward the future of smart mobility, the development and deployment of advanced intru- 17 

sion detection systems will be instrumental in ensuring the security, reliability, and sus- 18 

tainability of vehicular networks. We envision further research and refinement of our ap- 19 

proach to continue strengthening the defense mechanisms against cyber threats in the 20 

ever-evolving landscape of automotive technology. 21 
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