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Abstract: Over the last few decades, researchers have paid attention to finding an effective and 9

efficient metaheuristic algorithm that can determine the ideal parameters for PV models. In this 10

study, to determine the TDM’s nine unknown parameters, we will examine the efficacy of a re- 11

cently proposed metaheuristic algorithm called light spectrum optimizer (LSO). To further en- 12

hance the effectiveness of LSO in estimating those unknown parameters, a new improved variant 13

called ILSO is developed. This variant employs LSO in conjunction with two newly developed 14

update systems to improve its exploration and exploitation operators. We compare the best fit- 15

ness value, worst fitness value, average fitness, standard deviation, and p-value returned by the 16

Wilcoxon rank-sum test obtained by LSO and ILSO to those of three recently published compet- 17

itors when estimating the nine unknown parameters for the Photowatt-PWP201 module and the 18

RTC France solar cell. The experimental findings show that ILSO is the most efficient. 19

Keywords: Light spectrum optimizer; Photovoltaic systems; Triple diode model; Newton- 20

Raphson method. 21

1. Introduction 22

Solar energy (SE) is widely acknowledged as one of the most prominent examples of 23

currently available renewable energy sources [1]. SE makes it possible to generate electrical 24

power without using any water or fuel, as well as without polluting the surrounding 25

environment. As a direct consequence of this, the ecological equilibrium is preserved. 26

However, there are problems with low photoelectric conversion and correct modeling of 27

photovoltaic (PV) cells in the application of SE in real life [2]. Modeling the PV modules 28

and solar cells requires accurate mathematical models. Therefore, in literature, several 29

mathematical models are typically utilized in the process of analyzing the I-V curve 30

characteristics of SCs. The SDM is the simplest and most used mathematical model, but it 31

does not take into consideration the recombination losses that take place in the depletion 32

area [1]. Therefore, two additional mathematical models, known as the double-diode 33

model and the triple-diode model, were proposed to model the PV modules more 34

accurately.  35

Each model from those mathematical models has some unknown parameters that 36

have to be accurately estimated to model the SCs correctly.  As a result, the solution to 37

this problem is to recast it as an optimization problem. In recent years, deterministic, 38
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analytical, and meta-heuristic techniques have been employed in the estimation of those 1 

unknown model parameters with a high degree of precision. The analytical approach is 2 

based on the investigation of mathematical equations. Although those methods are easy to 3 

implement, they have several drawbacks that make them inappropriate for solving this 4 

problem [1, 3]. Therefore, some researchers employed deterministic approaches to 5 

estimate more accurate outcomes. However, they are highly dependent on the initial 6 

values chosen, which makes them prone to falling into local minima and taking a high 7 

computational cost to achieve the required outcomes. Meta-heuristic approaches were the 8 

only hope for solving this problem, so several studies in the literature employed several 9 

meta-heuristic algorithms for solving this problem. Some of those studies will be reviewed 10 

in the rest of this section. 11 

In [1], the Harris Hawks optimizer was improved using fractal maps to present a 12 

new variant, namely FCHHHO. This variant was applied for estimating the unidentified 13 

parameters of RTC France SC and Photowatt-PWP PV modules based on three different 14 

PV models. Eltamaly et al. [4] presented the musical chairs algorithm (MCA) to determine 15 

the SDM and DDM parameters. The reason behind using MCA is that it begins the 16 

optimization process with a large number of search agents in order to improve the quality 17 

of the exploration phase. Afterwards, the number of search agents should be gradually 18 

decreased in order to improve the quality of the exploitation phase and shorten the amount 19 

of time needed for the optimization to converge. Montano et al [5] employed the 20 

grasshopper optimization algorithm for estimating the parameters of SDM. This algorithm 21 

was compared with two well-established algorithms and assessed using four PV modules. 22 

In [6], the differential evolution adapted using the Linear population size reduction 23 

technique was proposed for estimating the unknown parameters of SDM and DDM. Qais 24 

et al [7] adapted the transient search optimization (TSO) algorithm to identify the optimal 25 

nine parameters of TDM. This was accomplished by minimizing the objective function, 26 

which was determined based on the datasheet of PV modules that were tested under 27 

standard test circumstances (STC). Also, the results of the proposed TSO were compared 28 

with those produced by utilizing various metaheuristic algorithms, and in this regard, the 29 

TSO attained the best results. Yadav et al [8] presented the jellyfish optimization (JFO) for 30 

estimating the unidentified parameters of SDM. This algorithm was assessed using two 31 

PV modules, namely PWP-201 and Soltech-1STH-215P, and compared to two well- 32 

common optimization techniques to verify its effectiveness. Several other metaheuristic 33 

algorithms were proposed for solving this optimization problem, some of them are the 34 

particle swarm optimization [9, 10], war strategy optimization algorithm [11], gravitational 35 

search algorithm [12], and Sine-cosine algorithm [13]. 36 

In this paper, we will investigate the performance of a newly proposed metaheuristic 37 

algorithm known as light spectrum optimizer (LSO), for finding the unknown parameters 38 

of TDM. In addition, an improved variant of LSO, namely ILSO, is proposed to further 39 

improve the performance of LSO for estimating the unknown parameters of the PV 40 

module model more accurately. This variant is based on integrating LSO with two newly 41 

designed updating schemes to enhance its exploration and exploitation operators. Both 42 



SMIJ 2023, Vol. 4. 3 of 12 
 

 

LSO and ILSO are evaluated using the Photowatt-PWP201 module and the RTC France 1 

solar cell based on the triple diode model and compared their outcomes to those of three 2 

recently published competitors in terms of best fitness value, worst fitness, average fitness, 3 

standard deviation, and p-value returned from the Wilcoxon rank-sum test. ILSO, 4 

according to the results obtained, is the most effective. In brief, the contributions in this 5 

study are: 6 

• Adapting the classical LSO for finding the TDM’s parameters 7 

• Improving LSO using two newly proposed updating schemes to better solve this 8 

problem 9 

• Assessing ILSO and LSO using the Photowatt-PWP201 module and the RTC France 10 

• The experimental findings show the effectiveness of ILSO over the other competitors. 11 

The following sections of this paper are organized as follows: The mathematical 12 

model of the TDM is discussed in Section 2; in Section 3, we describe the light spectrum 13 

optimizer and proposed algorithm; in Section 4, findings and their discussion are 14 

presented; Section 6 discusses the conclusion and future work. 15 

2. Mathematical description of the problem 16 

    Photovoltaic (PV) modules and solar cells are designed according to precise mathe- 17 

matical models to maximize their performance when generating electricity. However, 18 

those models have some unknown parameters that might negatively affect their perfor- 19 

mance if they are not accurately estimated before the design process. There are three dif- 20 

ferent PV models, namely the single diode model, the double diode model (SDM), and the 21 

triple diode model (TDM) [14] 22 

. Each of the first two models had some demerits, which were remedied later in the TDM. 23 

In this study, we will investigate the performance of one of the recently proposed metaheu- 24 

ristic algorithms for estimating the unknown parameters of TDM and improving the PV 25 

modules’ performance. However, before that, the rest of this section will go in-depth into 26 

the details of the TDM.  27 

1.1. Triple-diode model 28 

The TDM, as defined in Fig. 1, is composed of a photo-current source (𝐼𝑝ℎ), a shunt resistor 29 

(𝑅𝑠ℎ), parallel diodes, and series resistance (𝑅𝑠). The output current of TDM could be com- 30 

puted according to the following equation: 31 

𝐼 = 𝐼𝑝ℎ − ∑𝐼𝐷𝑖

3

𝑖

− 𝐼𝑠ℎ             (1) 

where 𝐼𝑠ℎ stands for the current in the shunt resistor, symbolized as 𝑅𝑠ℎ; 𝐼𝑝ℎ stands 32 

for the photo-current source; and 𝐼𝐷𝑖 represents the 𝑖𝑡ℎ diode’s current, which is defined 33 

as follows: 34 
                                   𝐼𝐷𝑖 =

𝐼𝑠𝑑𝑖 (𝑒
𝑉+𝐼𝑅𝑠
𝑎𝑖𝑉𝑡 − 1) , ∀ 𝑖 ∈

1: 3, 𝑉𝑡 =
𝑘𝑇

𝑄
  

(2) 

𝐼𝑠ℎ =
𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

                   (3) 

where 𝐼𝑠𝑑𝑖  stands for the 𝑖𝑡ℎ diode’s reverse saturation current, 𝑎𝑖  stands for the 35 

𝑖𝑡ℎ diode’s ideality factor, 𝑉 stands for the output voltage, 𝑅𝑠 stands for the series re- 36 

sistance, 𝑘 is the constant of Boltzmann, 𝑄 stands for the electron charge, and 𝑇 stands 37 

for the temperature of the solar cell. 38 
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 1 
Fig. 1: The TDM‘s electrical circuit 2 

 3 

1.2. Photovoltaic (PV) module 4 

The quantity of power generated by a solar generation unit that consists of a single 5 

solar cell is quite low. Therefore, PV modules relate 𝑁𝑠 cells in series so that the PV sys- 6 

tem’s output voltage can be increased. It is also possible to formulate the PV modules using 7 

the earlier equations, with the exception that 𝑉𝑡 =
𝑁𝑠𝑘𝑇

𝑞
  [15].  8 

1.3. Objective function: Root mean squared error (RMSE) 9 

Finding the unknown parameters' values that minimize the discrepancy between experi- 10 

mental and theoretical current data is crucial to the parameter extraction problem's solu- 11 

tion. Therefore, the root mean squared error (RMSE), which has been widely used as an 12 

objective function (OF) in the literature, is also considered in this study to solve this prob- 13 

lem. The mathematical model of this objective function is given by the following formula:  14 

Min 𝑅𝑀𝑆𝐸 = 𝑓(𝑥𝑖⃗⃗⃗  ) =

 √
1

𝑀
∗ ∑ (𝐼𝑚 − 𝐼𝑒(𝑉𝑒 , 𝑥𝑖⃗⃗⃗  ))𝑀

𝑘=1
2

 
   

(4) 

where the measured current is denoted by 𝐼𝑚, and the estimated current is denoted 15 

by 𝐼𝑒 . The measured data number is denoted by the letter 𝑀. 𝑥𝑖⃗⃗⃗   represents the values ob- 16 

tained by a metaheuristic algorithm for the unknown parameters of TDM. To solve (1), we 17 

employ the Newton-Raphson method, with the estimated unknown parameters repre- 18 

sented in 𝑥𝑖⃗⃗⃗  , as shown below [16]: 19 

𝐼 = 𝐼 −
𝐼

𝐼′
 (5) 

where 𝐼′ represents the derivative of I. 20 

3. The proposed light spectrum optimizer 21 

A new meta-heuristic method, known as Light Spectrum Optimizer (LSO), has been 22 

presented to take on the challenge of optimizing test functions for a single objective. The 23 

meteorological phenomenon that inspired LSO postulates that the colorful rainbow 24 

spectrum is produced by light rays reflecting, refracting, and dispersing at different angles 25 

as a result of passing through raindrops, with a reflective index ranging from 1.331 as 𝑘𝑟𝑒𝑑 26 

and 1.344 as 𝑘violet. Each of these rays is a potential solution to the optimization problem. 27 

LSO begins by generating 𝑁 rays, each of which has d dimensions and is first initialized 28 

uniformly at random between its upper and lower bounds using the following equation: 29 

𝑥𝑖⃗⃗⃗  = �⃗� + (�⃗⃗� − �⃗� ). 𝑟 , 𝑖 = 1,2,3, …… . , 𝑁                                        (6)                              30 

where 𝑥𝑖⃗⃗⃗   is a vector used to hold the 𝑖𝑡ℎ ray's position. �⃗⃗�  and �⃗⃗�  are two vectors 31 

that represent the lower and upper limits of the search space for each dimension in the 32 

optimization problem.  Similarly to metaheuristic algorithms, LSO's optimization process 33 

consists of two phases, which are discussed in detail below: generating new colorful rays 34 

(exploration) and dispersing colorful rays (exploitation).  35 

1.4. Generating new colorful ray: Exploration mechanism 36 
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The first step in the optimization procedure is to adjust the reflective index between 1 

𝒌𝒓𝒆𝒅 and 𝒌𝐯𝐢𝐨𝐥𝐞𝐭 in the following way: 2 

𝒌𝒓 = 𝒌𝒓𝒆𝒅 + 𝒓𝟏 × (𝒌𝒗𝒊𝒐𝒍𝒆𝒕 − 𝒌𝒓𝒆𝒅)                                            (7)                                          3 

where 𝒓𝟏 is an arbitrary value between zero and one. A probability between 0 and 4 

1, denoted as 𝒑, is employed to regulate light ray reflection and refraction, and its value is 5 

set at 0.8. However, a randomly generated probability between 0 and 1 called 𝒒  is 6 

employed to control the dispersal of the multicolored rainbow curve. Normal vectors for 7 

inner reflection (𝒙𝒏𝑩⃗⃗ ⃗⃗ ⃗⃗  ⃗), inner refraction (𝒙𝒏𝑨⃗⃗ ⃗⃗ ⃗⃗  ), and outer refraction (𝒙𝒏𝑪⃗⃗ ⃗⃗ ⃗⃗  ) are generated 8 

successively using the following equations, and these vectors are used to define the 9 

orientations of the rainbow spectra throughout the optimization process: 10 

𝑥𝑛𝐴⃗⃗ ⃗⃗ ⃗⃗  =
𝑥𝑟(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑛𝑜𝑟𝑚 (𝑥𝑟(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

)
                                       (8) 11 

𝑥𝑛𝐵⃗⃗ ⃗⃗ ⃗⃗  =
𝑥𝑝(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑛𝑜𝑟𝑚 (𝑥𝑝(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

)
                                         (9) 12 

𝑥𝑛𝐶⃗⃗ ⃗⃗ ⃗⃗  =
𝑥∗⃗⃗ ⃗⃗ 

𝑛𝑜𝑟𝑚 (𝑥∗⃗⃗ ⃗⃗ )
                                       (10) 13 

where 𝑥𝑟(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represents a randomly chosen solution from the population at time t, 14 

𝑥𝑝(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represents the position of the current ray, and 𝑥∗⃗⃗⃗⃗  represents the optimal solution 15 

obtained even now, and norm(.) represents the normalized vector. The following formula 16 

is applied to determine the incident light ray, 𝑥𝐿0⃗⃗⃗⃗⃗⃗ : 17 

𝑋𝑚𝑒𝑎𝑛 =
∑ 𝑥𝑖⃗⃗  ⃗𝑁

𝑖

𝑁
                                               (11) 18 

𝑥𝐿0⃗⃗⃗⃗⃗⃗ =
𝑋𝑚𝑒𝑎𝑛

𝑛𝑜𝑟𝑚 (𝑋𝑚𝑒𝑎𝑛)
                                           (12) 19 

where 𝑋𝑚𝑒𝑎𝑛 represents the population mean at the current function evaluation. In 20 

addition, the vectors of the internally and externally reflected and refracted light rays are 21 

calculated as follows: 22 

𝑥𝐿1⃗⃗⃗⃗⃗⃗ =
1

𝑘𝑟
[𝑥𝐿0⃗⃗⃗⃗⃗⃗ − 𝑥𝑛𝐴⃗⃗ ⃗⃗ ⃗⃗  (𝑥𝑛𝐴⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑥𝐿0⃗⃗⃗⃗⃗⃗ )] − 𝑥𝑛𝐴⃗⃗ ⃗⃗ ⃗⃗  |1 −

1

(𝑘𝑟)2
+

1

(𝑘𝑟)2
(𝑥𝑛𝐴⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑥𝐿0⃗⃗⃗⃗⃗⃗ )2|

1

2
                (13)        23 

            𝑥𝐿2⃗⃗⃗⃗⃗⃗ = 𝑥𝐿1⃗⃗⃗⃗⃗⃗ − 2𝑥𝑛𝐵⃗⃗ ⃗⃗ ⃗⃗  (𝑥𝐿1⃗⃗⃗⃗⃗⃗ ∙ 𝑥𝑛𝐵⃗⃗ ⃗⃗ ⃗⃗  )                                         (14)                                              24 

   25 

𝑥𝐿3⃗⃗⃗⃗⃗⃗ = 𝑘𝑟[𝑥𝐿2⃗⃗⃗⃗⃗⃗ − 𝑥𝑛𝐶⃗⃗ ⃗⃗ ⃗⃗  (𝑥𝑛𝐶⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑥𝐿2⃗⃗⃗⃗⃗⃗ )] + 𝑥𝑛𝐶⃗⃗ ⃗⃗ ⃗⃗  |1 − (𝑘𝑟)2 + (𝑘𝑟)2(𝑥𝑛𝐶⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑥𝐿2⃗⃗⃗⃗⃗⃗ )2|
1

2              (15)                    26 

where the inner refracted light ray is represented by 𝑥𝐿1⃗⃗⃗⃗⃗⃗ , the inner reflected light ray 27 

is represented by 𝑥𝐿2⃗⃗⃗⃗⃗⃗ , and the outer refracted light ray is represented by 𝑥𝐿3⃗⃗⃗⃗⃗⃗ . After the ray 28 

directions have been computed, a random probability between 0 and 1 is assigned to a 29 

variable denoted by the symbol 𝑝 , which is used to determine the formula used for 30 

updating the current position of each ray. In particular, at function evaluation 𝑡 + 1, the 31 

solution is updated according to the following formula if 𝑝  is less than a randomly 32 

generated number in the range [0, 1]: 33 

𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑥𝑡⃗⃗  ⃗ + 𝜖𝑅𝑉1
𝑛𝐺𝐼(𝑥𝐿1⃗⃗⃗⃗⃗⃗ − 𝑥𝐿3⃗⃗⃗⃗⃗⃗ ) × (𝑥𝑟1⃗⃗ ⃗⃗  ⃗ − 𝑥𝑟2⃗⃗ ⃗⃗  ⃗)                                    (16)                                       34 
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if 𝑝 is greater than the generated number, the following equation will be used to 1 

update the current position of each ray: 2 

𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑥𝑡⃗⃗  ⃗ + 𝜖𝑅𝑉2
𝑛𝐺𝐼(𝑥𝐿2⃗⃗⃗⃗⃗⃗ − 𝑥𝐿3⃗⃗⃗⃗⃗⃗ ) × (𝑥𝑟3⃗⃗ ⃗⃗  ⃗ − 𝑥𝑟4⃗⃗ ⃗⃗  ⃗)                                    (17)                            3 

where 𝑥𝑟3⃗⃗ ⃗⃗  ⃗, 𝑥𝑟2⃗⃗ ⃗⃗  ⃗, 𝑥𝑟1⃗⃗ ⃗⃗  ⃗, and 𝑥𝑟4⃗⃗ ⃗⃗  ⃗ represents four solutions selected at random from the 4 

current population. 𝑅𝑉1
𝑛  and 𝑅𝑉2

𝑛  are both randomly produced vectors. According to 5 

(18), the scaling factor 𝜖 can be determined.  GI is a factor that is derived from the inverse 6 

incomplete gamma function using the formula (19). 7 

                              𝜖 = 𝑎 × 𝑅𝑉3
𝑛                                (18) 8 

where 𝑅𝑉3
𝑛  is a vector including random values generated based on the normal 9 

distribution, and 𝑎 is a controlling parameter generated according to (20).   10 

𝐺𝐼 = 𝑎 × 𝑟−1 × 𝑃−1(𝑎, 1)                                         (19) 11 

where 𝑟 is a uniformly produced random number in the range [0,1] that has been 12 

inverted to favor the exploration operator.  The inverse incomplete gamma function of 13 

the value a is denoted by 𝑃−1. 14 

a = RV2 (1 − (
𝑡

𝑇𝑚𝑎𝑥
))                                                     (20)                                                    15 

where 𝑡  and 𝑇𝑚𝑎𝑥  refer to the current and maximum function equations, 16 

respectively, and 𝑅𝑉2 is a random value in [0, 1].  17 

1.5. Colorful rays scattering: Exploitation mechanism 18 

This step strengthens the exploitation operator by directing light toward the best-so- 19 

far solution, the current solution, and a solution selected randomly from the current 20 

solutions.  The mathematical model of scattering close to the current position is defined 21 

as:  22 

𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑥𝑡⃗⃗  ⃗ + 𝑅𝑉3 × (𝑥𝑟1⃗⃗ ⃗⃗  ⃗ − 𝑥𝑟2⃗⃗ ⃗⃗  ⃗) + 𝑅𝑉4
𝑛 × (𝑅 < 𝛽) × (𝑥∗⃗⃗⃗⃗ − 𝑥𝑡⃗⃗  ⃗)                    (21)                     23 

where 𝑅𝑉3 contains a number that is arbitrarily created between 0 and 1, and 𝑅𝑉4
𝑛 24 

is a vector that has been given a random initialization between 0 and 1. The following 25 

formula is used to generate rays in a new position for the second phase of the scattering 26 

process, and it is applied to both the best solution found to date and the current solution: 27 

𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 2 ∗ cos(𝜋 × 𝑟1) (𝑥∗⃗⃗⃗⃗ )(𝑥𝑡⃗⃗  ⃗)                                             (22)                                                      28 

where 𝑟1 is a numerical value that was chosen at random from the range 0 to 1. The 29 

transition between the first and second stages of the scattering process is carried out in 30 

accordance with the following formula, which is based on a predefined probability 𝑃𝑒: 31 

𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {
 (19)                        𝑖𝑓 𝑅 < 𝑃𝑒

(20)                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                         (23) 32 

where 𝑅 is a random number between zero and one. In the final stage of scattering, 33 

a new solution is generated by combining the current solution with a randomly selected 34 

solution from the current solutions according to the following equation: 35 

𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑥𝑟1⃗⃗ ⃗⃗  ⃗ + |𝑅𝑉5| × (𝑥𝑟2⃗⃗ ⃗⃗  ⃗ − 𝑥𝑟3⃗⃗ ⃗⃗  ⃗)) × �⃗⃗� + (1 − �⃗⃗� ) × 𝑥𝑡⃗⃗  ⃗                       (24) 36 

where 𝑅𝑉5 is a normal-distributed random number and �⃗⃗�  is a random vector with 37 

values of either 0 or 1.  By determining the difference between the objective values of each 38 

solution and the best-so-far solution and standardizing this difference in [0, 1], we can 39 
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tradeoff between (23) and (24). If the difference is less than a random threshold value 𝑅1 1 

between 0 and 1, then (23) is used; otherwise, (24) is carried out, as defined in (25):    2 

𝐹′ = |
𝐹−𝐹𝑏

𝐹𝑏−𝐹𝑤
|                                                             (25)                                                                    3 

𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {
𝐸𝑞. (23)                        𝑖𝑓 𝑅 < 𝑃𝑠 | 𝐹

′ < 𝑅1

𝐸𝑞. (24)                                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                               (26)                                  4 

where 𝑅 and 𝑅1 are numerical values chosen randomly in the interval [0,1]. In this 5 

study, LSO is employed to find the unknown parameters of TDM; however, it still has 6 

some demerits in terms of convergence speed and local optima avoidance, which motivate 7 

us to propose an improved variant, namely improved LSO (ILSO). This variant is based 8 

on presenting two newly proposed updating schemes that aid LSO in exploring several 9 

regions within the search space. The first scheme is used to strengthen the exploration 10 

operator and is mathematically defined as follows: 11 

     𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑥𝑟1⃗⃗ ⃗⃗  ⃗ + 𝑟2 ∗ (𝑥𝑟1⃗⃗ ⃗⃗  ⃗ − 𝑥𝑟2⃗⃗ ⃗⃗  ⃗) + r3 ∗ (𝑥𝑟3⃗⃗ ⃗⃗  ⃗ − 𝑥𝑟4⃗⃗ ⃗⃗  ⃗)                                     12 

(27) 13 

where 𝑟2 and 𝑟3 are two numbers selected at random in [0,1], and 𝑥𝑟4⃗⃗ ⃗⃗  ⃗ is a solution 14 

randomly chosen from the current population. The second scheme is used to promote the 15 

exploitation operator and is mathematically defined as follows: 16 

     𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑥∗⃗⃗⃗⃗ + 𝑥𝑡⃗⃗  ⃗)/2.0 + 𝑟2 ∗ 𝑣1 + r3 ∗ (𝑥𝑟2⃗⃗ ⃗⃗  ⃗ − 𝑥𝑟3⃗⃗ ⃗⃗  ⃗)                          (28) 17 

where 𝑣1 is given by the following equation: 18 

𝑣 1 = {
𝑥 𝑟1 − 𝑥 𝑡                  𝑓(𝑥 𝑎) < 𝑓(𝑥 𝑡)

𝑥 𝑡 − 𝑥 𝑟1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                                       (29)             19 

Those two schemes are exchanged with each other within the optimization process using 20 

the following formula: 21 

𝑥𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {
𝐸𝑞. (28)             𝑅 < 1 − 𝑡/𝑇𝑚𝑎𝑥
𝐸𝑞. (27)                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                (30)                                             22 

Those schemes are integrated with LSO to improve its performance when tackling 23 

the parameter estimation problem of TDM. The steps of ILSO are mathematically listed in 24 

Algorithm 1. 25 

Algorithm 1: The steps of ILSO 

Input: 𝑵, 𝑻𝒎𝒂𝒙 

1      Initializing N solutions using Eq. (6) 

2 While (𝑡< 𝑇𝑚𝑎𝑥) 

3           for each 𝑖 solution       

4 Evaluate each 𝑥𝑡+1
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   according to Eq. (4) 

5 Update 𝑥∗⃗⃗⃗⃗  if 𝑥𝑡+1
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is better 

6 𝑡 = 𝑡 + 1 

7               Compute 𝑥𝑛𝐴⃗⃗ ⃗⃗ ⃗⃗   , 𝑥𝑛𝐵⃗⃗ ⃗⃗ ⃗⃗  ,&𝑥𝑛𝐶⃗⃗ ⃗⃗ ⃗⃗   

8 Compute 𝑥𝐿0⃗⃗⃗⃗⃗⃗  , 𝑥𝐿1⃗⃗⃗⃗⃗⃗  ,𝑥𝐿2⃗⃗⃗⃗⃗⃗  , &𝑥𝐿3⃗⃗⃗⃗⃗⃗  

9 Update 𝑘𝑟 

10 Update 𝐺𝐼, 𝜖, and 𝑎 

11 Generate randomly 𝑝, 𝑞 in the range (0, 1) 



SMIJ 2023, Vol. 4. 8 of 12 
 

 

12 if  𝑝 ≤ 𝑞 

13            Compute 𝑥𝑡+1
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   by Eq. (16) 

14 Else 

15            Compute 𝑥𝑡+1
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   by Eq. (17) 

16 end if 

17 Evaluate each 𝑥𝑡+1
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   according to Eq. (4) 

18 Update 𝑥∗⃗⃗⃗⃗  if 𝑥𝑡+1
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is better 

19 𝑡 = 𝑡 + 1 

20 Update using Eq. (26) 

21 end for 

22 for each 𝑖 solution       

23        Evaluate each 𝑥𝑡+1
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   according to Eq. (4) 

24        Update 𝑥∗⃗⃗⃗⃗  if 𝑥𝑡+1
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is better 

25                   𝑡 = 𝑡 + 1 

26        Compute 𝑥𝑡+1
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   by Eq. (30) 

27 end for 

28 end while 

Return 𝒙∗⃗⃗⃗⃗  

 1 

 2 

4. Results and Discussions  3 

  In this section, the performance of ILSO and LSO is compared to three competitors, 4 

namely the artificial gorilla troops optimizer (GTO) [17], the pelican optimization algo- 5 

rithm (POA) [18], and the dandelion optimizer (DO) [19], when estimating the unknown 6 

parameters of the Photowatt-PWP201 module and the RTC France solar cell based on the 7 

triple diode model. The properties of this solar cell and PV module are described in Table 8 

1. The lower bound and upper bound of each unknown parameter are listed below: 9 
0.9𝐼𝑆𝐶 ≤ 𝐼𝑝ℎ(𝐴) ≤ 1.1𝐼𝑆𝐶  10 

1 𝑛𝐴 ≤ 𝐼𝑠𝑑𝑖(𝐴) ≤ 10 𝜇𝐴, ∀𝑖 ∈ 1: 3 11 
0 ≤ 𝑅𝑠(𝛺) ≤ 0.5 12 

0 ≤ 𝑅𝑠ℎ(𝛺) ≤ 500 13 
1 ≤ 𝑎1 ≤ 2 14 

1.2 ≤ 𝑎2 ≤ 2 15 
1.4 ≤ 𝑎3 ≤ 2 16 

Regarding the parameters of the proposed algorithms and rival optimizers, they are 17 

all set as recommended in the cited papers, with the exception of 𝑇𝑚𝑎𝑥 and 𝑁, which are 18 

assigned values of 35000 and 30, respectively. To ensure a fair comparison. All algorithms 19 

are implemented in MATLAB over the same device. 20 

 21 

Table 1: Properties of RTC France and Photowatt-PWP201module 22 

Characteristics  𝑷𝒎[𝑾] 𝑽𝒎[𝑽] 𝑰𝒎[𝑨] 𝑽𝒐𝒄[𝑽] 𝑰𝑺𝑪[𝑨] 𝑵𝒔 𝑲𝒊 𝑲𝒗 

RTC France 0.31 0.459 0.6755 0.5736 0.7605 1 0.000387 
-

0.003739 

Photowatt-PWP201 11.5 12.649 0.912 16.7785 1.0317 36 0.0008 -0.0725 

 23 

 24 

1.6.   RTC France solar cell 25 
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  Table 2 presents the outcomes of four performance metrics, namely best fitness 1 

(best), average fitness (average), worst fitness value (worst), standard deviation (STD), 2 

and p-value returned from the Wilcoxon rank-sum test, which are obtained by various 3 

algorithms when estimating the unknown parameters of the RTC France based on TDM. 4 

Those outcomes are obtained after running each optimizer 25 independent times. This 5 

table discloses that ILSO could achieve more accurate outcomes than all the compared 6 

algorithms for all performance metrics. In addition, the outcomes of ILSO are significantly 7 

different, as shown in the p-value row in this table. To further show the effectiveness of 8 

ILSO, the convergence curve analysis and multiple comparison test are employed and 9 

depicted in Figs. 2(a) and (b), respectively. Those figures confirm the effectiveness of ILSO 10 

over all the other competitors. Finally, the I-V curve and P-V curve obtained by ILSO and 11 

measured data for the RTC France solar cell are presented in Figs. 2(c) and (d). 12 

 13 

Table 2: Performance analysis over RTC France over the TDM  14 

Algorithms ILSO LSO POA GTO DO 

Best 7.515103E-04 2.170131E-03 7.794266E-04 7.517423E-04 8.096134E-04 

Worst 1.695653E-03 4.670947E-03 4.715392E-03 2.630616E-03 4.087969E-03 

Average 8.021100E-04 3.266317E-03 2.501136E-03 9.702419E-04 2.411337E-03 

STD 1.691133E-04 6.789619E-04 9.169341E-04 4.511328E-04 9.196907E-04 

p-value  3.019859E-11 1.205668E-10 3.005888E-04 6.065757E-11 

 15 

               *Bold indicates the best result. 16 

 17 

1.7.  Photowatt-PWP201 module 18 

Table 3 displays the results of four considered performance metrics and the p-value 19 

returned from the Wilcoxon rank-sum test. The outcomes of these metrics are obtained by 20 

various algorithms within 30 independent times when attempting to estimate the un- 21 

known parameters of the Photowatt-PWP201 module based on TDM. This table reveals 22 

that ILSO was capable of achieving more accurate results than any of the other algorithms 23 

that were compared for each and every performance metric. The p-value row in this table 24 

demonstrates that there is a statistically significant difference between the results of ILSO 25 

and the other groups. The convergence curve analysis and the multiple comparison test 26 

are used, and they are illustrated in Figs. 3(a) and (b), respectively. These are used to fur- 27 

ther demonstrate the usefulness of ILSO. These figures provide more evidence that ILSO 28 

is more effective than any of its other rivals. In conclusion, the I-V curve and the P-V curve 29 

generated by ILSO as well as the observed data for the Photowatt-PWP201 module are 30 

displayed in Figs. 3(c) and (d), respectively. 31 

 32 

 

a) 

 

b) 
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c) 

 

d) 

Fig. 2: Performance analysis over RTC France: (a) Convergence curve; b) Multiple 1 

comparison test; c) P-V curve; d) I-V curve. 2 

 3 

 4 

Table 3: Performance analysis over Photowatt-PWP201 module over the TDM  5 

Algorithms ILSO LSO POA GTO DO 

Best 2.050660E-03 2.389523E-03 2.612456E-03 2.050674E-03 2.388104E-03 

Worst 2.533591E-03 3.679760E-03 4.246695E-03 2.671222E-03 5.167893E-03 

Average 2.179462E-03 2.990192E-03 3.352704E-03 2.222857E-03 3.343317E-03 

STD 2.814545E-04 3.021238E-04 3.691542E-04 2.130525E-04 5.477742E-04 

p-value  2.227269E-09 9.918629E-11 1.114256E-03 1.776908E-10 

  6 

 *Bold indicates the best result. 7 

5. Conclusions 8 

Researchers have focused their efforts over the course of the most recent few decades on 9 

locating a metaheuristic that is effective and efficient for establishing the appropriate parameters 10 

for PV models. Therefore, in this study, we will investigate the performance of a recently intro- 11 

duced metaheuristic algorithm known as the light spectrum optimizer (LSO), with the goal of de- 12 

termining the nine undetermined parameters of the TDM. In addition, an improved variant of LSO 13 

known as ILSO has been developed in order to further boost the effectiveness of the algorithm in 14 

estimating those unknown characteristics. This variant makes use of LSO in conjunction with two 15 

update systems for the purpose of enhancing its exploration and exploitation operators, both LSO 16 

and ILSO are employed to estimate the nine parameters for the Photowatt-PWP201 module and 17 

the RTC France solar cell, and LSO and ILSO's results are compared to those of three recently 18 

published competitors in terms of best fitness value, worst fitness value, average fitness, standard  19 

 

a)  

 

b) 
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c)  

 

d) 

Fig. 3: Performance analysis over Photowatt-PWP201 module: (a) Convergence curve; b) 1 

Multiple comparison test; c) P-V curve; d) I-V curve. 2 

deviation, and p-value returned by the Wilcoxon rank-sum test. According to the results of 3 

the experiments, ILSO is the method with the highest efficiency. The proposed ILSO will be evalu- 4 

ated in the future using a variety of other optimization problems, such as the 0-1 knapsack prob- 5 

lem, feature selection, task scheduling problem in cloud and fog computing, path planning prob- 6 

lem for UAVs, and multiobjective optimization problem. 7 

 8 
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