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1 |Introduction 

Lumpy Skin Disease (LSD) is a viral disease that severely affects cattle, leading to significant economic losses 

in the livestock industry. It is caused by the Lumpy Skin Disease Virus (LSDV) and is primarily transmitted 

through insect vectors such as mosquitoes and ticks [1]. The disease results in fever, skin nodules, reduced 

milk production, and, in severe cases, death. LSD outbreaks can have devastating effects on dairy and beef 

farming, particularly in regions with limited veterinary resources [2]. Early detection and intervention are 

essential to controlling the spread of the disease, reducing economic losses, and ensuring animal welfare. 

However, traditional diagnostic methods often require skilled professionals and specialized laboratory tests, 

which may not be accessible in rural and resource-limited areas. And despite advancements in veterinary 

diagnostics, there is still a significant gap in automated, scalable, and real-time detection methods for LSD [3]. 

This highlights the need for a rapid, automated, and cost-effective solution for LSD detection. Artificial 
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90.36%, outperforming the other architectures. The results demonstrate the potential of deep learning for rapid 

and reliable LSD detection, which could aid veterinarians and farmers in early disease identification. 
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intelligence (AI) has demonstrated success in medical imaging and disease classification [4], but its applications 

and improvements in livestock disease detection are still needed. This research aims to address this gap by 

leveraging deep learning models for automated LSD detection using cattle images [5].  

Deep learning, particularly convolutional neural networks (CNNs), has achieved remarkable success in image-

based disease detection in human healthcare and agriculture. CNNs can learn complex patterns from images, 

making them well-suited for classifying diseases based on visual symptoms [6]. In veterinary applications, 

CNNs have been widely applied in the field of animal health monitoring for various tasks, including some 

disease detection [7, 8], However, the potential of deep learning for LSD detection still needs further 

exploration. By applying transfer learning with pre-trained CNN architectures, it is possible to leverage 

existing knowledge from large-scale image datasets and adapt these models for accurate classification of LSD 

in cattle [9]. This study evaluates five state-of-the-art CNN architectures including MobileNetV2, 

ResNet50V2, DenseNet121, InceptionV3, and Xception to identify the most effective model for automated 

LSD detection. 

The primary objective of this research is to develop an automated deep learning-based system for classifying 

LSD in cattle images. Specifically, this study aims to evaluate the performance of different CNN architectures 

in detecting LSD, compare their accuracy, precision, recall, and F1-score to identify the most suitable model, 

and analyze the impact of transfer learning and data augmentation on model performance. By addressing 

these objectives, the study seeks to provide a robust AI-driven solution for LSD detection that can assist 

veterinarians and farmers in early diagnosis, reducing the reliance on manual examination and laboratory 

testing. 

This research makes several contributions to the field of veterinary disease diagnostics and AI-based livestock 

management. First, it provides a comparative analysis of multiple CNN architectures for LSD classification, 

offering insights into the strengths and limitations of each model. Second, it demonstrates the effectiveness 

of transfer learning in adapting pre-trained models for livestock disease detection, reducing the need for large, 

labeled datasets. Third, it proposes an AI-driven framework that can be integrated into mobile applications 

or on-farm diagnostic tools, enabling real-time disease detection in remote and resource-limited areas. Finally, 

the study highlights the potential of deep learning in enhancing disease surveillance and early intervention in 

the livestock industry. By bridging the gap between AI research and veterinary practice, this work contributes 

to the development of intelligent agricultural technologies that improve animal health and productivity. 

The rest of this paper is organized as follows: Section 2 provides a detailed review of related work, discussing 

existing LSD detection methods and the application of deep learning in livestock disease classification. Section 

3 describes the dataset, preprocessing techniques and outlines the deep learning methodology, including the 

selected CNN architectures, transfer learning approaches, and model training process. Section 4 presents 

experimental analysis, Environmental setup and the evaluation metrics. Section 5 shows the performance of 

different models and discusses the findings, challenges, and limitations. Section 6 presents the implications 

of using AI for LSD detection in real-world livestock management. Finally, Section 7 concludes the study by 

summarizing key contributions, limitations, and potential directions for future research in AI-driven 

veterinary diagnostics. 

2 |Related Work 

This section reviews existing studies on AI-based disease detection in livestock, particularly on machine 

learning applications for LSD detection, and discusses innovations, methodologies, and techniques employed 

in previous research. By analyzing prior studies, this review identifies research gaps and highlights the 

contributions of this work in advancing AI-driven diagnostics for cattle health. 

Artificial intelligence, particularly deep learning, has been extensively used in veterinary medicine for disease 

detection [10]. Convolutional Neural Networks (CNNs) have shown remarkable success in analyzing medical 

and agricultural images [9, 11]. In livestock health monitoring, several deep learning models have been 

explored for image-based disease detection. The authors in [12] proposed the VGG16 model for cattle disease 
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detection, aiming to enhance diagnostic accuracy and efficiency. The study focused on classifying foot and 

mouth disease (FMD), infectious bovine keratoconjunctivitis (IBK), and LSD using a fine-tuned VGG16 

model, pretrained on ImageNet. The methodology included data collection, preprocessing, and transfer 

learning to adapt the model for livestock disease classification. The model was evaluated using precision, 

recall, and F1-score, achieving a test accuracy of 88.14%. The results demonstrated the potential of CNN-

based approaches for automated veterinary diagnostics, contributing to improved disease monitoring in the 

livestock industry. Another model was employed in [13], where a hybrid CNN-SVM approach was proposed 

for cattle disease identification. The study focused on detecting Foot and Mouth Disease, Bovine Respiratory 

Disease, Mastitis, Bovine Tuberculosis, and Johne’s Disease using a dataset of 5,000 images. The integration 

of CNN with SVM enhanced diagnostic precision, achieving an accuracy of 94%, outperforming Random 

Forest (85%) and standalone SVM (87%). Evaluation metrics, including recall and F1-score, indicated that 

the model consistently exceeded 90% performance across all disease categories. However, the study 

highlighted that the model's accuracy is significantly affected by image quality, and its implementation in 

resource-limited environments poses computational challenges. 

 Researchers also applied pretrained CNN models and custom architectures to analyze images of infected and 

healthy animals to classify skin lesions in cattle. However, most existing studies focus on small datasets and 

do not provide comprehensive model comparisons. In [14], authors employed multiple CNN architectures, 

including deep CNN, Inception-V3, and VGG-16, were utilized for early detection of external cattle diseases 

such as FMD, LSD, and IBK. The study aimed to enhance disease recognition in husbandry farms through 

deep learning techniques. The proposed system achieved 95% accuracy, demonstrating its potential in 

reducing human diagnostic errors and assisting veterinarians and farmers in early disease identification. 

Another approach was explored in [15], where a CNN-based architecture was proposed for Lumpy Skin 

Disease detection in dairy cows. The study employed image preprocessing and segmentation techniques to 

identify affected areas before feature extraction. Four CNN models including DenseNet, MobileNetV2, 

Xception, and InceptionResNetV2 were evaluated for classification. The results demonstrated that 

MobileNetV2 achieved the highest performance among all these models with a high accuracy. 

In [16], a deep learning-based segmentation and classification approach was proposed for detecting high-risk 

areas of LSD in cattle. The study utilized a 10-layer CNN trained on the Cattle’s Lumpy Skin Disease (CLSD) 

dataset. Feature extraction was performed using color histograms, as skin color plays a crucial role in 

identifying affected areas. A deep pre-trained CNN extracted features from segmented regions, and 

classification was conducted using an Extreme Learning Machine (ELM) classifier. The proposed model 

achieved an accuracy of 90.12%, showing its effectiveness compared to state-of-the-art techniques in LSD 

detection. Another machine learning-based approach was proposed in [17] for the early prediction of LSD in 

cattle using image classification. The study employed Convolutional Neural Networks (CNNs) and evaluated 

three well-known architectures: VGG16, VGG19, and InceptionV3, achieving accuracies of 87%, 86%, and 

85%, respectively. The methodology included image preprocessing, model training, and performance 

evaluation on a separate test dataset. Additionally, the study examined the impact of different activation 

functions (ReLU, Sigmoid, Tanh, and Linear) in the fully connected layers, analyzing their role in optimizing 

model performance. 

These studies highlight the rapid advancements in applying deep learning models for LSD detection in cattle. 

While CNN-based architecture has shown strong classification performance, further improvements are 

needed. Many existing works rely on pretrained models with limited adaptation to LSD-specific features, and 

datasets often lack diversity and large-scale representation. Enhancing classification accuracy and model 

robustness remains a challenge, especially in real-world conditions with varying image quality and 

environmental factors. To address these gaps, this study aims to develop and evaluate multiple deep learning 

models, enhance classification accuracy through advanced preprocessing, and utilize a diverse dataset for 

better generalization. Additionally, it seeks to analyze and compare model performance using key evaluation 

metrics to establish a reliable framework for LSD diagnosis. 
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3 |Materials and Methods 

This section outlines the approach used to develop and evaluate deep learning models for LSD classification. 

It describes the dataset composition, preprocessing techniques, model architecture, training strategies. The 

study leverages transfer learning with various pre-trained CNN architectures to enhance feature extraction 

and classification accuracy. 

3.1 |Dataset Description 

The dataset used in this study consists of images of cows categorized into two classes: healthy cows and cows 

affected by LSD. The dataset was collected from publicly available sources, ensuring diversity in lighting 

conditions, angles, and cow breeds. Figure 1 provides a sample of the images used in this study, illustrating 

both healthy and infected cattle. The training set, comprising 80% of the total images, was used to optimize 

model parameters and learn relevant patterns. The validation set, accounting for 10% of the images, was 

employed to fine-tune hyperparameters and monitor performance during training, ensuring the model did 

not overfit the training data. Finally, the testing set, also consisting of 10% of the images, was reserved for 

evaluating the final model’s performance on unseen data. 

 
Figure 1. Images of healthy and infected cattle used in the Dataset. 

 

To improve model robustness and prevent overfitting, preprocessing techniques were applied. Each image 

was resized to 224 × 224 pixels to match the input size required by pre-trained CNNs. Normalization was 

performed by scaling pixel values to the [0,1] range [18]. In addition, to increase the variability of training data 

and enhance model generalization, data augmentation techniques were applied [19]. The augmentation was 

only applied to the training set, while validation and testing sets remained unchanged to evaluate real-world 

performance accurately. 

3.2 |Deep Learning Models 

In this study, several deep learning models were utilized for feature extraction and classification, leveraging 

transfer learning to enhance performance. The study explored multiple CNN architectures that were pre-

trained on the ImageNet dataset [20], allowing them to extract meaningful and discriminative features from 

the input images. The selected architectures included MobileNetV2, ResNet50V2, DenseNet121, 

InceptionV3, and Xception, each offering unique structural advantages. MobileNetV2 was chosen for its 

lightweight design and efficiency, making it suitable for deployment in resource-constrained environments 

[21]. ResNet50V2, with its deep residual connections, aimed to mitigate vanishing gradient issues and improve 

feature propagation [22]. DenseNet121 was incorporated due to its densely connected layers, which promote 

feature reuse and efficient parameter utilization [23]. InceptionV3 leveraged multi-scale feature extraction 

through inception modules, enhancing its ability to recognize intricate patterns [24]. Finally, Xception, an 

extension of the Inception architecture, utilized depthwise separable convolutions to improve computational 

efficiency while maintaining high accuracy [25]. These models were trained and fine-tuned on the LSD dataset, 

and their performances were systematically evaluated to identify the most effective approach for LSD 

classification. 

Each model was modified by replacing the original classification head with a custom fully connected layer 

tailored for binary classification. The modification included a Global Average Pooling Layer to reduce the 
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feature dimensions while retaining essential spatial information. This was followed by dense layers with 128 

and 64 neurons, both utilizing ReLU activation to introduce non-linearity and improve feature learning. To 

prevent overfitting, dropout layers with a 40% dropout rate were incorporated [26]. Finally, a sigmoid 

activation function was applied in the output layer to produce probability scores for binary classification. 

3.3 |Model Training and Hyperparameter Tuning 

The models were trained using binary cross-entropy loss and optimized with the Adam optimizer using a 

batch size of 32, ensuring efficient memory utilization while maintaining stable gradient updates [27]. The 

models were trained for 60 epochs, with early stopping implemented to halt training if the validation loss did 

not improve for a predefined number of epochs, preventing overfitting [28]. The initial learning rate was set 

to 0.001, but to improve convergence and avoid overshooting optimal weights, the ReduceLROnPlateau 

strategy was applied. This technique dynamically reduced the learning rate by a factor of 0.2 when the 

validation loss plateaued, ensuring more refined weight adjustments in later training stages. 

To further enhance performance, fine-tuning was employed on the pre-trained CNN models. Initially, the 

base models were frozen to leverage their pre-trained features. After the network was sufficiently trained on 

the dataset, the top 20 layers of the base CNN models were unfrozen, allowing the model to adapt to dataset-

specific patterns. This fine-tuning process helped the models capture more domain-specific features related 

to LSD, leading to improved classification accuracy [29]. The fine-tuned layers were trained with a lower 

learning rate (1e-5) to prevent drastic weight updates, ensuring that the learned representations were refined 

without disrupting the pre-trained knowledge. 

4 |Experimental Analysis 

This section provides a comprehensive analysis of the experimental setup, model implementation, and 

evaluation metrics used to assess the performance of deep learning models for LSD detection in cattle. 

4.1 |Environmental Setup 

The experiments were conducted using the Kaggle environment, which provides a high-performance cloud-

based computing environment for deep learning tasks. The system specifications included an Intel Xeon 

CPU, 30GB RAM, and an NVIDIA Tesla P1000 GPU, which ensuring efficient model training and 

evaluation. The experiments were implemented using Python 3.10.12 programing language, with TensorFlow 

2.17.1 and Keras 3.5.0 as the primary deep learning frameworks [30, 31]. 

4.2 |Implementation Details 

Five different CNN architectures were employed: MobileNetV2, ResNet50V2, DenseNet121, InceptionV3, 

and Xception. Each model was initialized with pre-trained ImageNet weights, leveraging transfer learning for 

feature extraction. Initially, the base layers of the models were frozen to retain pre-trained features, and only 

the top classification layers were trained. Later, fine-tuning was applied by unfreezing the top 20 layers to 

allow the models to learn dataset-specific features. The full implementation details and hyperparameters 

tuning methods are presented in Table 1. 
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  Table 1. Training and model Hyperparameter settings. 

Setting type Hyperparameter Setup 

Data 

Image size 224 * 224 

Training-validation-testing ratios 80: 10:10  

Rescaling factor 1/255 

Augmentation techniques Rotation, Shear, Zoom, Flip, Shift. 

Model 

Optimizer Adam 

Batch size 32 

Epochs 60 

Initial learning rate 0.001 

Learning rate scheduler ReduceLROnPlateau 

Early stopping monitor='val_loss', patience=5 

 

4.3 |Evaluation Metrices 

To evaluate the performance of the models, multiple evaluation metrics were used. These metrics provide a 

comprehensive assessment of model effectiveness in distinguishing between LSD-infected and healthy cattle. 

The key evaluation measures include accuracy, precision, recall, and F1-score. Additionally, confusion 

matrices were generated to analyze the classification outcomes and identify patterns in misclassification. 

 Accuracy quantifies the proportion of correctly classified images relative to the total number of 

samples. It is mathematically expressed as: 

 𝐴𝑐𝑐𝑢𝑒𝑟𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁⁄ ) (1) 

Where 𝑇𝑃 (True Positives) are correctly identified LSD cases, 𝑇𝑁 (True Negatives) are correctly classified as 

healthy cases, 𝐹𝑃 (False Positives) occur when healthy samples are misclassified as LSD-positive, and 𝐹𝑁 

(False Negatives) represent LSD-infected samples incorrectly labeled as healthy. 

 Precision measures the reliability of positive predictions by calculating the proportion of correctly 

identified LSD cases among all instances predicted as positive: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  (𝑇𝑃) (𝑇𝑃 + 𝐹𝑃⁄ ) (2) 

 Recall (Sensitivity) evaluates the model’s ability to correctly detect all actual LSD cases. It is defined 

as: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  (𝑇𝑃) (𝑇𝑃 + 𝐹𝑁⁄ ) (3) 

 F1-Score provides a balanced measure by considering both precision and recall. It is calculated as: 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)⁄  (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 Metric is important in minimizing false alarms, it ensures that healthy animals are not mistakenly 

diagnosed as infected. On the other hand, the high 𝑅𝑒𝑐𝑎𝑙𝑙 indicates that the model effectively captures LSD 

cases and reduces the likelihood of undetected infections, which is crucial for disease control and 

containment. Finally, 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 balances precision and recall, making it especially useful for handling 

imbalanced datasets while maintaining high sensitivity and specificity. 

5 |Results and Discussion 

In this study, several deep learning models were employed for LSD detection, including MobileNetV2, 

ResNet50V2, DenseNet121, InceptionV3, and Xception. These models were trained and tested on a curated 

dataset of cattle images to distinguish between healthy and infected cases. The models were evaluated using 

accuracy, precision, recall, and F1-score to assess their classification effectiveness. Table 2 summarizes the 

classification performance of the five CNN models tested. Additionally, Figure 2 provides a visual 
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representation of these performance metrics. DenseNet121 achieved the highest accuracy (90.36%) and F1-

score (90.25%), indicating its superior capability in distinguishing between healthy and infected cattle. 

MobileNetV2 and ResNet50V2 also performed well, with accuracies of 88.22% and 88.44%, respectively. 

InceptionV3 had the lowest accuracy (82.87%), suggesting that it was less effective in feature extraction for 

LSD detection. 

Table 2. Model performance comparison. 

Model Accuracy Precision Recall F1-Score 

MobileNetV2 0.8822 0.8876 0.8760 0.8800 

ResNet50V2 0.8844 0.8851 0.8810 0.8826 

DenseNet121 0.9036 0.9031 0.9020 0.9025 

InceptionV3 0.8287 0.8428 0.8174 0.8219 

Xception 0.8715 0.8720 0.8680 0.8696 

 

 
Figure 2. Performance comparison of different CNN models in LSD detection. 

 

The confusion matrix in Figure 3(a) offers deeper insights into DenseNet121 model classification behavior. 

exhibited the highest true positive and true negative counts, indicating its effectiveness in minimizing 

misclassifications. Additionally, the Receiver Operating Characteristic (ROC) curves were plotted Figure 3(b), 

with the Area Under the Curve (AUC) values which indicates the model's ability to distinguish between 

classes. 

  
(A) (B) 

Figure 3. Performance Analysis of the DenseNet Model: (a) Confusion Matrix; (b) ROC Curve. 
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6 |Implications 

The findings of this study have significant implications for the livestock industry, particularly in improving 

disease management, enhancing productivity, and supporting global food security. LSD is a major threat to 

cattle health, leading to economic losses due to reduced milk production, poor meat quality, and increased 

mortality rates [32]. The integration of deep learning models for early and accurate disease detection can help 

mitigate these losses by enabling rapid intervention, reducing the spread of infection, and minimizing the 

need for mass culling, which often disrupts supply chains in the livestock sector. 

From a food security perspective, ensuring the health of livestock directly impacts the availability and 

affordability of animal-based food products, including milk and meat. Outbreaks of LSD and other infectious 

diseases can lead to shortages, price fluctuations, and economic instability in rural communities that depend 

on livestock farming. AI-driven diagnostic tools can strengthen disease surveillance and early warning 

systems, preventing large-scale outbreaks and ensuring a stable supply of livestock products, thereby 

contributing to global food security efforts. 

This study also aligns with the United Nations’ Sustainable Development Goals (SDGs), particularly SDG 2 

(Zero Hunger) and SDG 3 (Good Health and Well-being) [33]. By improving livestock disease detection, this 

research supports sustainable agricultural practices, ensuring a steady food supply while reducing economic 

hardships for farmers. Additionally, minimizing disease outbreaks through AI-powered early detection 

promotes animal welfare and reduces the overuse of antibiotics and other treatments, which aligns with SDG 

12 (Responsible Consumption and Production). This not only enhances efficiency but also contributes to the 

digital transformation of the livestock industry, paving the way for more resilient and data-driven agricultural 

systems. 

7 |Conclusion and Future Work 

This study explored the application of deep learning for Lumpy Skin Disease (LSD) detection in cattle by 

evaluating five advanced CNN architectures: MobileNetV2, ResNet50V2, DenseNet121, InceptionV3, and 

Xception. The models were assessed using multiple performance metrics, including accuracy, precision, recall, 

and F1-score, to ensure a comprehensive evaluation of their classification capabilities. Among these deep 

learning models, DenseNet121 demonstrated the highest classification performance, achieving an accuracy 

of 90.36%, making it the most suitable model for LSD diagnosis. The results highlight the potential of AI-

driven diagnostic tools in improving disease detection accuracy, aiding early intervention, and supporting the 

livestock industry in disease management. Despite these promising results, several areas warrant further 

exploration. Future work will focus on enhancing model generalizability by incorporating larger and more 

diverse datasets, including images from different environmental conditions and cattle breeds. Additionally, 

lightweight models optimized for real-time deployment on edge devices will be investigated to facilitate on-

field disease detection. Further research will also explore integrating explainable AI techniques, ensuring that 

model predictions are interpretable and trustworthy for veterinarians and farmers. 
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