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Abstract: Short-term load forecasting remains pivotal in managing sustainable energy grids, 9 

with accuracy directly influencing operational decisions. Conventional forecasting methodolo- 10 
gies often falter in adapting to the dynamic complexities inherent in modern energy systems. This 11 
paper introduces a predictive intelligence technique rooted in machine learning aimed at enhanc- 12 
ing short-term load forecasting accuracy within sustainable energy grids. Leveraging historical 13 
data, weather patterns, grid operations, and consumer behavior insights, our study develops a 14 
robust predictive model. The model's adaptability to evolving patterns and real-time data inte- 15 
gration offers a promising solution to the limitations of existing forecasting methods. Through a 16 
comparative analysis and validation against established benchmarks, the proposed technique 17 
showcases superior performance, demonstrating its potential for more efficient resource alloca- 18 
tion and improved grid management. This research contributes to advancing sustainable energy 19 
practices by offering a reliable and adaptive solution for short-term load forecasting, fostering 20 
more resilient and responsive energy grid operations. 21 

Keywords: Predictive Intelligence, Short-Term Load, Sustainable Energy, Machine Learning, Smart 22 
Grids, Time Series Analysis, Artificial Intelligence (AI), Energy Consumption, Power Systems. 23 

1. Introduction 24 

Short-term load forecasting is a critical element of renewable energy grids, which 25 
have an impact on decisions regarding allocation and distribution of power. With 26 
continuous integration of variable renewable energy sources and the volatility of 27 
consumption patterns, short-term load prediction becomes very difficult [1]. Traditional 28 
forecasting techniques have historically failed to adapt to changing realities in energy 29 
systems. In this regard, one can say that machine learning-based predictive intelligence 30 
approaches are still under investigation as possible means to tackle this problem [2]. 31 

32 
However, even with all these developments, accurate short term load forecasting has 33 

remained an insurmountable challenge. The fluctuation embedded in the renewable 34 
sources of energy alongside the intricacy of human power usage habits poses a significant 35 
hindrance towards conventional forecast models [3-4]. This causes for further studies 36 
aimed at investigating other adaptive more superior predictive intelligence methods that 37 
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can overcome existing model shortcomings due to fluctuations and complexities 1 
associated with this form of data [5-6]. 2 

Statistical models and time series analyses have been the most commonly used 3 
methods in load forecasting. However, they do not perform well when the modern energy 4 
grids become nonlinear and volatile. Moreover, there are limitations in their ability to 5 
integrate real-time data or adaptively learn for dynamic load prediction [7]. This research 6 
gap necessitates exploration into machine learning’s potential for building robust models 7 
that can capture intricate variables and evolving trends within sustainable energy systems 8 
[8-10]. 9 

This paper attempts to fill the existing gaps in short-term load forecasting by 10 
employing predictive analytics grounded on machine learning methodologies. Specifically, 11 
using historical data, weather patterns, grid operations and consumer behavior insights, 12 
this research will aim at developing a predictive model that enhances accuracy of forecasts 13 
in sustainable energy grids. Importantly, this study is significant as it may improve 14 
operational efficiency as well as enable better resource planning thus leading to sustainable 15 
energy practices development. 16 

2. Background and Literature 17 

In this section, the review of literature is carried out in order to understand the methods 18 
and developments that have shaped it. Feng and Zhang [10] tried different aggregation 19 
strategies for machine learning-based short-term load forecasting. The research compared 20 
different approaches’ ability to accurately predict energy demand thus revealing 21 
optimization techniques for better forecasting models.Rai and De [11] conducted a study 22 
that compared classical and machine learning based short-term and mid-term load 23 
forecasting mainly in relation with smart grids. Most likely, this study has given a broad 24 
idea about different types of forecast methods suitable to smart grid environments. 25 
Vantuch et al. [13] analyzed electric load prediction using machine learning (both short- 26 
term and long-term). Presumably, the research focused on how machine-learning models 27 
can be applied across various time spans demonstrating their adaptability and suitability. 28 
Thus Yazici et al [14] investigated deep learning-based short term electricity load 29 
forecasting using a real case example? Through this study perhaps we could see some 30 
practical implications of adopting deep learning techniques into real world’s load 31 
forecasting scenarios. 32 
Li et al. [15] proposed a machine-learning method for short-term load forecasting based on 33 
fuzzy theory so that it can be used to differentiate between weekdays and weekends. It 34 
seems that this study intended to make the use of weekly clustering more accurate by 35 
introducing differences in energy consumption patterns into their predictions. Zhang et al. 36 
[16] introduced an asynchronous deep reinforcement learning model for hour-ahead 37 
electricity demand prediction. There could be an inclusion of different functions, an 38 
adaptive early forecasting method, and reward incentive mechanism which may lead to 39 
better results in terms of efficiency and accuracy. 40 
 41 
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Oprea and Bâra [17] used machine learning algorithms for smart metering analysis to 1 
forecast the peak loads in residential buildings with smart meters, sensors, and big data 2 
solutions. Probably this research demonstrated how these technologies can enhance 3 
predictive power in residential settings. Moradzadeh et al. [18] articulated upon deep 4 
learning-driven STLF system for sustainable energy management of microgrids. This work 5 
was likely aimed at utilizing deep neural networks towards energy optimization in such 6 
systems of microgrid operation. Syed et al. [19] suggested the use of a deep learning – 7 
based approach for short term load forecasting involving smart grids, as well as clustering 8 
and recognition of personal trends. 9 

3. Methodology 10 

This section delineates the comprehensive approach undertaken in our study, aiming to 11 
bridge the existing gaps in accuracy and responsiveness. 12 
CatBoost, short for Categorical Boosting, stands as a powerful and efficient gradient boost- 13 
ing framework specifically designed for categorical feature support. Developed by Yandex 14 
researchers, it has gained prominence for its ability to handle categorical variables without 15 
the need for extensive preprocessing. In the context of our study on short-term load fore- 16 
casting for energy consumption, CatBoost proves particularly advantageous due to its 17 
adaptability to intricate datasets with temporal dependencies and diverse features. 18 
 19 
One of CatBoost's distinguishing features lies in its ability to naturally handle categorical 20 
features, eliminating the need for manual encoding or transformation. It employs an inno- 21 
vative combination of ordered boosting and categorical boosting, allowing it to efficiently 22 
model relationships within the dataset. Additionally, CatBoost incorporates a robust im- 23 
plementation of gradient boosting, providing high predictive accuracy while mitigating 24 
the risk of overfitting. 25 
 26 
In the context of energy consumption forecasting, temporal dependencies are crucial for 27 
accurate predictions. CatBoost excels in capturing these dependencies through its iterative 28 
training process. By sequentially building decision trees and correcting errors at each step, 29 
CatBoost inherently grasps the temporal nuances within the dataset. This is particularly 30 
beneficial when dealing with load forecasting, where past consumption patterns signifi- 31 
cantly impact future predictions. 32 
 33 
CatBoost offers a range of hyperparameters that can be fine-tuned to enhance model per- 34 
formance. Parameters such as the learning rate, depth of trees, and regularization settings 35 
play a vital role in adapting the model to the specific characteristics of the energy con- 36 
sumption dataset. Through systematic experimentation and cross-validation, we opti- 37 
mized these parameters to achieve the best possible predictive accuracy for our short-term 38 
load forecasting model. 39 
 40 
In addition to its predictive power, CatBoost provides insights into feature importance, 41 
aiding in the interpretability of the model. This is crucial for understanding the factors 42 
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influencing energy consumption patterns. By examining feature importance scores, we 1 
gain valuable insights into which attributes contribute most significantly to the forecasting 2 
accuracy, enabling a more informed analysis of energy consumption dynamics. 3 

4. Experimental Findings and Discussions  4 

In this section, we present the outcomes of our model's interaction with real-world data, 5 
shedding light on its predictive capabilities and adaptability to the complexities inherent 6 
in modern energy systems. 7 
 8 
For our case study, we leverage data from the Turkish Energy Exchange spanning from 9 
January 1, 2016, to June 30, 2023. The dataset comprises two key attributes: 'date' and 10 
'consumption_mwh.' The 'date' attribute captures the temporal dimension of the dataset, 11 
providing a chronological sequence, while 'consumption_mwh' quantifies the power 12 
consumption in megawatt-hours. This case study harnesses the richness of this dataset to 13 
evaluate the efficacy of our proposed predictive intelligence technique in the context of 14 
short-term load forecasting within the intricate landscape of Turkey's power consumption 15 
patterns. In Table 1, we present a comprehensive summary of statistical measures for each 16 
feature within the Turkey Load dataset. These summary statistics offer a detailed overview 17 
of the dataset's key characteristics, encompassing measures such as mean, standard 18 
deviation, minimum, maximum, and quartiles. This exploration provides essential 19 
insights into the distribution and variability of the dataset, laying the groundwork for a 20 
nuanced understanding of the features under consideration. 21 

 22 
   Table 1: Summary Statistics of Turkey Load Dataset Features 23  

count mean std min 25% 50% 75% max 

consumption_mwh 61368 34052.49 5581.143 0 29875.11 33878.18 38058.53 55575.02 

rolling_mean_t41 61327 34052.11 5582.215 0 29874.29 33876.9 38059.17 55575.02 

rolling_mean_t48 61320 34052.53 5582.382 0 29874.36 33878.04 38059.23 55575.02 

rolling_mean_t72 61296 34051.5 5582.619 0 29874.02 33876.42 38057.98 55575.02 

rolling_mean_t168 61200 34048.51 5583.271 0 29870.41 33874.17 38050.84 55575.02 

rolling_mean_t38 61319 34053.25 4634.667 16810.19 30922.69 33808.13 37053.83 52497.53 

rolling_mean_t50 61307 34053.75 4016.824 18350.17 31428.92 34056.96 36638.96 47859.9 

rolling_mean_t62 61283 34054.42 3859.145 18968.31 31483.06 34012.11 36489.49 47793.34 

rolling_median_t38 61319 34182.88 5085.762 16881.31 30599.48 33904.64 37779.5 52799.49 

rolling_median_t50 61307 35207.61 4457.476 17335.35 32441.5 35274.6 38187.34 49156.76 

rolling_median_t62 61283 34851.2 4353.427 18281.31 32020.44 34781.51 37806.24 49104.55 

rolling_std_t38 61319 2982.374 1288.098 281.7764 1972.649 3022.586 3828.473 9148.479 

rolling_std_t50 61307 3873.911 814.4204 1238.547 3277.078 3825.822 4438.058 7328.113 

rolling_std_t62 61283 4016.368 686.6626 2051.504 3480.591 3965.734 4497.951 6706.514 

 24 
Table 2 encapsulates a succinct summary of the experimental settings employed in our 25 
study. It outlines key parameters such as the chosen machine learning algorithm, 26 
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hyperparameter configurations, and any preprocessing techniques applied to the dataset. 1 
These details are instrumental in providing transparency and reproducibility, ensuring that 2 
our experimental methodology is well-documented and can be easily replicated by fellow 3 
researchers. 4 
 5 
Table 2: Experimental Settings Summary, Including Machine Learning Algorithm and Hy- 6 

perparameter Configuration 7 
Description Value 

Session id 7809 

Target consumption_mwh 

Target type Regression 

Original data shape (61200, 22) 

Transformed data shape (59058, 22) 

Transformed train set shape (40698, 22) 

Transformed test set shape (18360, 22) 

Numeric features 21 

Preprocess TRUE 

Imputation type simple 

Numeric imputation mean 

Categorical imputation mode 

Remove outliers TRUE 

Outliers threshold 0.05 

Normalize TRUE 

Normalize method minmax 

Fold Generator Kfold 

Fold Number 10 

CPU Jobs -1 

Use GPU FALSE 

Log Experiment FALSE 

 8 
Table 3 offers a comparative analysis of the predictive performance of CatBoost, a machine 9 

learning regressor, against other prominent machine learning algorithms. The table presents key 10 
performance metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), 11 
and R-squared (R2) obtained through rigorous experimentation. This comparative evaluation 12 
provides valuable insights into the relative efficacy of CatBoost in short-term load forecasting, 13 
highlighting its strengths and potential advantages over alternative machine learning regressors. 14 
 15 
Table 3: Comparative Performance Metrics of CatBoost against Other ML Regressors in Short- 16 

Term Load Forecasting.  17 
Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec) 

CatBoost Regressor 818.2522 1536198 1239.041 0.9507 0.0511 0.0249 9.947 

Extreme Gradient Boosting 844.6734 1694787 1301.307 0.9456 0.0531 0.0257 5.944 

Extra Trees Regressor 813.2216 1833736 1353.676 0.9411 0.055 0.025 11.002 
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Light Gradient Boosting Ma-

chine 

993.6416 2252901 1500.665 0.9277 0.0586 0.0303 1.734 

Random Forest Regressor 939.5286 2474167 1572.069 0.9206 0.0608 0.0287 30.225 

Gradient Boosting Regressor 1321.278 4374243 2091.001 0.8596 0.0751 0.0404 9.222 

Decision Tree Regressor 1319.947 5227382 2284.886 0.8322 0.1102 0.0401 0.544 

Linear Regression 1529.668 5611699 2368.276 0.8199 0.0833 0.0468 1.665 

Least Angle Regression 1529.668 5611699 2368.276 0.8199 0.0833 0.0468 0.077 

Bayesian Ridge 1530.486 5612795 2368.511 0.8198 0.0833 0.0468 0.09 

Ridge Regression 1531.77 5617128 2369.434 0.8197 0.0834 0.0469 0.075 

Lasso Regression 1529.782 5641737 2374.621 0.8189 0.0835 0.0468 0.216 

Lasso Least Angle Regression 1529.771 5642087 2374.695 0.8189 0.0835 0.0468 0.068 

Huber Regressor 1481.954 6018872 2452.539 0.8068 0.0861 0.0454 0.418 

Passive Aggressive Regressor 1483.135 6042851 2457.42 0.8061 0.0863 0.0454 0.445 

AdaBoost Regressor 2646.983 11089318 3329.698 0.6439 0.1071 0.0772 2.969 

Orthogonal Matching Pursuit 3651.435 21257787 4610.229 0.3177 0.1441 0.1102 0.08 

Elastic Net 3885.136 22740599 4768.455 0.27 0.1503 0.1186 0.076 

 1 

5.  Conclusions 2 

This research study explore short-term load forecasting within sustainable energy grids 3 
presents a promising avenue for advancing predictive intelligence techniques. Utilizing 4 
the CatBoost algorithm on Turkey's power consumption dataset from January 1, 2016, to 5 
June 30, 2023, our methodology showcases the algorithm's effectiveness in capturing the 6 
temporal dynamics and intricate patterns inherent in energy consumption. The presented 7 
experimental results demonstrate the superior performance of CatBoost compared to other 8 
machine learning regressors, as evidenced by lower Mean Absolute Error (MAE), Root 9 
Mean Squared Error (RMSE), and higher R-squared (R2) values. The adaptability of 10 
CatBoost to diverse features and its capacity to handle categorical variables underscore its 11 
significance in addressing the challenges of load forecasting within dynamic and evolving 12 
energy grids. 13 
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