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Abstract: This paper introduces the concept of rough fermatean neutrosophic sets and investigates 

their properties. Additionally, a cosine similarity measure between these sets is proposed. By 

applying this measure to a medical diagnosis example, the paper illustrates how the method can be 

used in practical situations, highlighting its effectiveness in complex decision-making scenarios. This 

innovation holds promise for improving decision-making processes, especially in critical areas like 

medical diagnosis, where making accurate assessments amidst uncertainty is crucial.  
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1. Introduction 

The concept of neutrosophic sets [14] originated from the new branch of philosophy called 

neutrosophy, which means knowledge of neutral thought and this neutral represents the main 

distinction between fuzzy and intuitionistic fuzzy logic and set. It is a logic in which each proposition 

is estimated to have a degree of truth (T), a degree of indeterminacy (I), and a degree of falsity (F) 

respectively, and which lies between [0, 1]. The neutrosophic set generalizes the classical set or crisp 

set proposed by Cantor, the fuzzy set proposed by Zadeh [20], the interval-valued fuzzy set proposed 

independently by Zadeh [21], Grattan-Guiness [6], the intuitionistic fuzzy set proposed by Atanassov 

[1], and interval-valued intuitionistic fuzzy set proposed by Atanassov and Gargov [2].  

Authors explored neutrosophic sets & SVNS across fields like decision-making, image 

processing, medical diagnosis, and more[4,5,7-11,13, 15-19]. Senapati and Yager[22] discussed a 

numerical case to validate the rationality of the concept of fermatean fuzzy sets.  It is also important 

to mention that the class of this type of fuzzy set has more ability to capture the uncertainties as 

compared to intuitionistic fuzzy sets and Pythagorean fuzzy sets. Fermatean neutrosophic sets are 

studied by C. Antony Crispin Sweety et al. [3]. 

Rough set theory, introduced by Pawlak [12] indeed offers a valuable framework for handling 

imprecise and uncertain information, which is common in many real-world scenarios. It extends the 

traditional crisp set theory to accommodate this kind of data, making it particularly useful in the 

study of intelligent systems where information may be incomplete or ambiguous. 

The recent development of rough neutrosophic sets adds another layer of sophistication to this 

field. The fusion of rough set theory with neutrosophic sets in the form of rough neutrosophic sets 

offers a powerful mathematical tool for handling incomplete information. In rough neutrosophic sets, 

the rating of alternatives is expressed using upper and lower approximation operators, capturing the 

uncertainty inherent in the data. Moreover, the characterization of sets by truth-membership degree, 

indeterminacy-membership degree, and falsity-membership degree allows for a nuanced 

representation of incomplete information, making rough neutrosophic sets a versatile tool for 

decision-making in uncertain environments. 
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The paper consists of four sections. The first two sections serve as the introduction and provide 

preliminary information. In the third section, we define rough fermatean neutrosophic sets and 

establish several operations associated with them. Section four presents the introduction of cosine 

similarity measures for rough fermatean neutrosophic sets. Lastly, a numerical example is solved to 

demonstrate the practicality, relevance, and effectiveness of the proposed methodologies. 

 

2. Preliminaries 

This section consists of the basic results of this paper, refer to [1-22]. 

 

3. Rough Fermatean Neutrosophic Sets 

In this section, we have to introduce the Rough Fermatean Neutrosophic (RFN)set. 

 

Definition 3.1. Let K be the universal set and Θ be an equivalence relation on K. Let 𝐹  be the 

fermatean neutrosophic set of K. The lower and upper approximations of F in the approximation 

space (𝐾, Θ) are defined as follows: 

𝛩∎(𝐹) = 〈(g , 𝛩∎(𝐹𝑡)(𝑔), 𝛩∎(𝐹𝑖)(𝑔), 𝛩∎(𝐹𝑓)(𝑔)) , g ∈ 𝐾〉 

𝛩∎(𝐹) = 〈(g, 𝛩∎(𝐹𝑡)(𝑔), 𝛩∎(𝐹𝑖)(𝑔), 𝛩∎(𝐹𝑓)(𝑔)) , g ∈ 𝐾〉 

Where                     𝛩∎(𝐹𝑡)(𝑔) =∧𝑠∈[𝑔]Θ
𝐹𝑡(𝑠) 

𝛩∎(𝐹𝑖)(𝑔) =∨𝑠∈[𝑔]Θ
𝐹𝑖(𝑠) 

𝛩∎(𝐹𝑓)(𝑔) =∨𝑠∈[𝑔]Θ
𝐹𝑓(𝑠) 

 

Also𝛩∎(𝐹𝑡)(𝑔) =∨𝑠∈[𝑔]Θ
𝐹𝑡(𝑠) 

𝛩∎(𝐹𝑖)(𝑔) =∧𝑠∈[𝑔]Θ
𝐹𝑖(𝑠) 

𝛩∎(𝐹𝑓)(𝑔) =∧𝑠∈[𝑔]Θ
𝐹𝑓(𝑠) 

Where    0 ≤ (𝛩∎(𝐹𝑡)(𝑔))3 + (𝛩∎(𝐹𝑖)(𝑔))3 + (𝛩∎(𝐹𝑓)(𝑔))3 ≤ 2   and                            

0 ≤ (𝛩∎(𝐹𝑡)(𝑔))3 + (𝛩∎(𝐹𝑖)(𝑔))3 + (𝛩∎(𝐹𝑓)(𝑔))3 ≤ 2 

 

Example 3.2. Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}  be the universal set. Let 𝐹1 be the FN set defined 

by{
𝑎

0.6,0.1,0.7
,

𝑏

0.5,0.8,0.4
,

𝑐

0.7,0.5,0.3
,

𝑑

0.4,1,0.8
}. Let  Θ be a congruence relation on P such that congruence 

classes are the subsets given by {{𝑎}, {𝑏, 𝑐, 𝑑}}. Then the lower and upper approximations of 𝐹1 are 

given by, 

𝛩∎(𝐹1)(𝑥) = {
𝑎

0.6,0.1,0.7
,

𝑏

0.4,1,0.8
,

𝑐

0.4,1,0.8
,

𝑑

0.4,1,0.8
} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈 

and 

𝛩∎(𝐹1)(𝑥) = {
𝑎

0.6,0.1,0.7
,

𝑏

0.7,0.5,0.4
,

𝑐

0.7,0.5,0.4
,

𝑑

0.7,0.5,0.4
} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈 

Example 3.3. Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}  be the universal set. Let 𝐹2 be the fermatean Neutrosophic set 

defined by, 

{
𝑎

0.3,0.7,0.5
,

𝑏

0.4,0.6,0.7
,

𝑐

0.8,0.3,0.7
,

𝑑

0.7,0.2,0.4
} 

Let  Θ be congruence relations on P such that congruence classes are the subsets given by 

{{𝑎, 𝑏, 𝑐}, {𝑑}}. Then the lower and upper approximations of 𝐹2 are given by, 

𝛩∎(𝐹2)(𝑥) = {
𝑎

0.3,0.7,0.7
,

𝑏

0.3,0.7,0.7
,

𝑐

0.3,0.7,0.7
,

𝑑

0.7,0.2,0.4
} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈 

and 

𝛩∎(𝐹2)(𝑥) = {
𝑎

0.8,0.3,0.5
,

𝑏

0.8,0.3,0.5
,

𝑐

0.8,0.3,0.5
,

𝑑

0.7,0.2,0.4
} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈 

 

Definition 3.4. Let F be the RFN fuzzy set. Then the complement of F, 𝐹𝑐 is defined as follows: 
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𝛩∎(𝐹𝑐)(𝑔) = {𝛩∎(𝐹𝑓)(𝑔), 1 − 𝛩∎(𝐹𝑖)(𝑔), 𝛩∎(𝐹𝑡)(𝑔)} 

And                𝛩∎(𝐹𝑐)(𝑔) = {𝛩∎(𝐹𝑓)(𝑔), 1 − 𝛩∎(𝐹𝑖)(𝑔), 𝛩∎(𝐹𝑡)(𝑔)} 

For all 𝑔 ∈ 𝐹. 

 

Definition 3.6. Let Θ(F1) and Θ(F2) be two RFN fuzzy sets. Then Θ(F1) ⊆ Θ(F2) if and only if the 

following conditions hold: 

𝛩∎(𝐹1𝑡)(𝑔) ≤ 𝛩∎(𝐹2𝑡)(𝑔) 

𝛩∎(𝐹1𝑖)(𝑔) ≥ 𝛩∎(𝐹2𝑖)(𝑔) 
𝛩∎(𝐹1𝑓)(𝑔) ≥ 𝛩∎(𝐹2𝑓)(𝑔) 

and 

𝛩∎(𝐹1𝑡)(𝑔) ≤ 𝛩∎(𝐹2𝑡)(𝑔) 

𝛩∎(𝐹1𝑖)(𝑔) ≥ 𝛩∎(𝐹2𝑖)(𝑔) 
𝛩∎(𝐹1𝑓)(𝑔) ≥ 𝛩∎(𝐹2𝑓)(𝑔) 

 

Definition 3.7. LetΘ(F1) and Θ(F2) be two RFN fuzzy sets. ThenΘ(F1) ∪ Θ(F2)is defined as follows. 

(𝛩∎(𝐹1𝑡) ∪ 𝛩∎(𝐹2𝑡))(ℎ) = 𝑚𝑎𝑥{𝛩∎(𝐹1𝑡), 𝛩∎(𝐹2𝑡)} 

(𝛩∎(𝐹1𝑖) ∪ 𝛩∎(𝐹2𝑖))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑖), 𝛩∎(𝐹2𝑖)} 
(𝛩∎(𝐹1𝑓) ∪ 𝛩∎(𝐹2𝑓))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑓), 𝛩∎(𝐹2𝑓)} 

and 

(𝛩∎(𝐹1𝑡) ∪ 𝛩∎(𝐹2𝑡))(ℎ) = 𝑚𝑎𝑥{𝛩∎(𝐹1𝑡), 𝛩∎(𝐹2𝑡)} 

(𝛩∎(𝐹1𝑖) ∪ 𝛩∎(𝐹2𝑖))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑖), 𝛩∎(𝐹2𝑖)} 
(𝛩∎(𝐹1𝑓) ∪ 𝛩∎(𝐹2𝑓))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑓), 𝛩∎(𝐹2𝑓)} 

 

Example 3.7 Consider the RFN sets in Example 2.2 and 2.3. Then the union is given by, 

(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))(𝑎) = (0.6,0.7,0.7) 

(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))(𝑏) = (0.4,0.7,0.7) 

(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))(𝑐) = (0.4,0.7,0.7) 

(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))(𝑑) = (0.7,0.2,0.4) 

 

and 

(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))(𝑎) = (0.8,0.3,0.5) 

(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))(𝑏) = (0.8,0.3,0.4) 

(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))(𝑐) = (0.8,0.3,0.4) 

(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))(𝑑) = (0.7,0.2,0.4) 

Definition 3.8. Let Θ(F1) and Θ(F2)  be two RFN fuzzy sets. Then Θ(F1) ∩ Θ(F2) is defined as 

follows. 

(𝛩∎(𝐹1𝑡) ∩ 𝛩∎(𝐹2𝑡))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑡), 𝛩∎(𝐹2𝑡)} 

(𝛩∎(𝐹1𝑖) ∩ 𝛩∎(𝐹2𝑖))(ℎ) = 𝑚𝑎𝑥{𝛩∎(𝐹1𝑖), 𝛩∎(𝐹2𝑖)} 
(𝛩∎(𝐹1𝑓) ∩ 𝛩∎(𝐹2𝑓))(ℎ) = 𝑚𝑎𝑥{𝛩∎(𝐹1𝑓), 𝛩∎(𝐹2𝑓)} 

and 

(𝛩∎(𝐹1𝑡) ∩ 𝛩∎(𝐹2𝑡))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑡), 𝛩∎(𝐹2𝑡)} 

(𝛩∎(𝐹1𝑖) ∩ 𝛩∎(𝐹2𝑖))(ℎ) = 𝑚𝑎𝑥{𝛩∎(𝐹1𝑖), 𝛩∎(𝐹2𝑖)} 
(𝛩∎(𝐹1𝑓) ∩ 𝛩∎(𝐹2𝑓))(ℎ) = 𝑚𝑎𝑥{𝛩∎(𝐹1𝑓), 𝛩∎(𝐹2𝑓)} 

 

Example 3.9. Consider the RFN set in Example 2.2 and 2.3. Then the intersection is given by, 

(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2))(𝑎) = (0.3,1,0.7) 

(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2))(𝑏) = (0.3,1,0.8) 

(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2))(𝑐) = (0.3,1,0.8) 

(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2))(𝑑) = (0.4,1,0.8) 

 

and 
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(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2))(𝑎) = (0.6,1,0.7) 

(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2))(𝑏) = (0.7,0.5,0.5) 

(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2))(𝑐) = (0.7,0.5,0.5) 

(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2))(𝑑) = (0.7,0.5,0.4) 

 

Definition 3.10.If 𝐹1 and 𝐹2 be two RFN sets. Then we define the following 

1. 𝛩(𝐹1) = 𝛩(𝐹2)if and only if  𝛩∎(𝐹1) = 𝛩∎(𝐹2) and  𝛩∎(𝐹1) = 𝛩∎(𝐹2). 

2. 𝛩(𝐹1) ⊆ 𝛩(𝐹2)if and only if   𝛩∎(𝐹1) ⊆ 𝛩∎(𝐹2) and  𝛩∎(𝐹1) ⊆ 𝛩∎(𝐹2). 

3. 𝛩(𝐹1) ∪ 𝛩(𝐹2)if and only if   𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2)and  𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2). 

4. 𝛩(𝐹1) ∩ 𝛩(𝐹2)if and only if   𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2) and  𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2). 

5. 𝛩(𝐹1) + 𝛩(𝐹2)if and only if   𝛩∎(𝐹1) +  𝛩∎(𝐹2) and  𝛩∎(𝐹1) + 𝛩∎(𝐹2). 

6. 𝛩(𝐹1)°𝛩(𝐹2)if and only if   𝛩∎(𝐹1)°𝛩∎(𝐹2) and  𝛩∎(𝐹1)°𝛩∎(𝐹2). 

 

Proposition 3.11. If 𝛩(𝐹2), 𝛩(𝐹2) and 𝛩(𝐹3)are RFN sets. Then the following are straightforward 

from the definitions. 

1. ~𝛩(𝐹1)(~𝛩(𝐹1)) = 𝛩(𝐹1) 

2. 𝛩(𝐹1) ∪ 𝛩(𝐹2) = 𝛩(𝐹2) ∪ 𝛩(𝐹1), 𝛩(𝐹1) ∩ 𝛩(𝐹2) = 𝛩(𝐹2) ∩ 𝛩(𝐹1) 

3. (𝛩(𝐹1) ∪ 𝛩(𝐹2)) ∪ 𝛩(𝐹3) = 𝛩(𝐹1) ∪ (𝛩(𝐹2) ∪ 𝛩(𝐹3))  and (𝛩(𝐹1) ∩ 𝛩(𝐹2)) ∩ 𝛩(𝐹3) = 𝛩(𝐹1) ∩

(𝛩(𝐹2) ∪ 𝛩(𝐹3)) 

4. (𝛩(𝐹1) ∪ 𝛩(𝐹2)) ∩ 𝛩(𝐹3) = (𝛩(𝐹1) ∪ 𝛩(𝐹3)) ∩ (𝛩(𝐹2) ∪ 𝛩(𝐹3)) and (𝛩(𝐹1) ∪ 𝛩(𝐹2)) ∩ 𝛩(𝐹3) =

(𝛩(𝐹1) ∪ 𝛩(𝐹3)) ∩ (𝛩(𝐹2) ∪ 𝛩(𝐹1)) 

 

Proposition 3.12. If𝛩(𝐹1)𝑎𝑛𝑑𝛩(𝐹2)are RFN sets. Then the following are satisfied. 

1. ~(𝛩(𝐹1) ∪ 𝛩(𝐹2)) = (~𝛩(𝐹1)) ∩ (~𝛩(𝐹2)) 

2. ~(𝛩(𝐹1) ∩ 𝛩(𝐹2)) = (~𝛩(𝐹1)) ∪ (~𝛩(𝐹2)) 

Proof:  

(i) ~(𝛩(𝐹1) ∪ 𝛩(𝐹2)) = ~{(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2)), (𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))} 

 

= {~(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2)), ~(𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2))} 

 

= {~(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2)), ~(𝛩∎(𝐹1) ∩ 𝛩∎(𝐹2))} 

 

 = (~𝛩(𝐹1)) ∩ (~𝛩(𝐹2)) 

(ii) Similarly, we prove this part. 

 

Proposition 3.13. Let F1 and  F2be two RFN sets. Then                            

(i) 𝐹1 ∪ 𝐹2F1 ∪ F2 

(ii) 𝐹1 ∩ 𝐹2ÍF1 ∩ F2 

Proof: 

 (𝛩∎(𝐹1𝑡) ∪ 𝛩∎(𝐹2𝑡))(ℎ) = 𝑚𝑎𝑥{𝛩∎(𝐹1𝑡), 𝛩∎(𝐹2𝑡)} 

(𝛩∎(𝐹1𝑖) ∪ 𝛩∎(𝐹2𝑖))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑖), 𝛩∎(𝐹2𝑖)} 
(𝛩∎(𝐹1𝑓) ∪ 𝛩∎(𝐹2𝑓))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑓), 𝛩∎(𝐹2𝑓)} 

 

Consider𝛩∎(𝐹1𝑡 ∪ (𝛩∎(𝐹1𝑡) ∪ 𝛩∎(𝐹2𝑡))(ℎ) = 𝑚𝑎𝑥{𝛩∎(𝐹1𝑡), 𝛩∎(𝐹2𝑡)} 

(𝛩∎(𝐹1𝑖) ∪ 𝛩∎(𝐹2𝑖))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑖), 𝛩∎(𝐹2𝑖)} 
(𝛩∎(𝐹1𝑓) ∪ 𝛩∎(𝐹2𝑓))(ℎ) = 𝑚𝑖𝑛{𝛩∎(𝐹1𝑓), 𝛩∎(𝐹2𝑓)} 

(𝐹1𝑡 ∪ 𝐹2𝑡)(𝑔) =∧𝑠∈[𝑔]Θ
𝐹1𝑡 ∪ 𝐹2𝑡(𝑠) 

        =∧𝑠∈[𝑔]Θ
(𝑚𝑎𝑥{𝐹1𝑡, 𝐹2𝑡}) 

≥ 𝑚𝑎𝑥{∧𝑠∈[𝑔]Θ
𝐹1𝑡(𝑠) ,∧𝑠∈[𝑔]Θ

𝐹2𝑡(𝑠)} 

≥ 𝑚𝑎𝑥{∧𝑠∈[𝑔]Θ
𝐹1𝑡(𝑠) , ∧𝑠∈[𝑔]Θ

𝐹2𝑡(𝑠)} 
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= 𝑚𝑎𝑥{𝛩∎(𝐹1𝑡)(𝑔), 𝛩∎(𝐹2𝑡)(𝑔)} 

= 𝛩∎(𝐹1𝑡)(𝑔) ∪ 𝛩∎(𝐹2𝑡)(𝑔) 

Similarly, 

𝛩∎(𝐹1𝑖 ∪ 𝐹2𝑖)(𝑔) ≤ 𝛩∎(𝐹1𝑖)(𝑔) ∪ 𝛩∎(𝐹2𝑖)(𝑔) 

𝛩∎(𝐹1𝑖 ∪ 𝐹2𝑖)(𝑔) ≤ 𝛩∎(𝐹1𝑖)(𝑔) ∪ 𝛩∎(𝐹2𝑖)(𝑔) 

Thus,𝛩∎(𝐹1 ∪ 𝐹2)𝛩∎(𝐹1) ∪ 𝛩∎(𝐹2) 

In the same way, we prove for upper approximation. 

Hence,𝐹1 ∪ 𝐹2F1 ∪ F2. 

(iii) The proof is similar to the proof (i). 

 

4. Application of Rough Fermatean Neutrosophic Sets 

In this section, we introduce the application of rough fermatean neutrosophic sets. Also, study 

the cosine similarity measure of rough fermatean neutrosophic sets. Moreover, medical diagnosis 

problems are discussed for establishing the proposed model. 

 

4.1 Cosine Similarity Measure of Rough Fermatean Neutrosophic Sets 

Definition 4.1.1. 𝛩(𝐹1) 𝑎𝑛𝑑  𝛩(𝐹2) are RFN sets in 𝑋 = {𝑥1 , 𝑥2 … … 𝑥𝑛}.  A cosine similarity 

measure between 𝛩(𝐹1) 𝑎𝑛𝑑  𝛩(𝐹2)is defined as follows: 

𝐶𝑂𝑆𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) =

1

𝑛
∑

(𝛿𝛩(𝐹1𝑡)(𝑥𝑖)𝛿𝛩(𝐹2𝑡)(𝑥𝑖)+𝛿𝛩(𝐹1𝑖)(𝑥𝑖)𝛿𝛩(𝐹2𝑖)(𝑥𝑖)+𝛿𝛩(𝐹1𝑓)(𝑥𝑖)𝛿𝛩(𝐹2𝑓)(𝑥𝑖))

√(𝛿𝛩(𝐹1𝑡)(𝑥𝑖))2+(𝛿𝛩(𝐹1𝑡)(𝑥𝑖))2+(𝛿𝛩(𝐹1𝑓)(𝑥𝑖))2√(𝛿𝛩(𝐹2𝑡)(𝑥𝑖))2+(𝛿𝛩(𝐹2𝑖)(𝑥𝑖))2+(𝛿𝛩(𝐹2𝑓)(𝑥𝑖))2

𝑛
𝑖=1   

Where 

𝛿𝛩(𝐹1𝑡)(𝑥𝑖) =
(𝛩∎(𝐹1𝑡)(𝑥𝑖) + 𝛩∎(𝐹1𝑡)(𝑥𝑖))

2
 

𝛿𝛩(𝐹1𝑖)(𝑥𝑖) =
(𝛩∎(𝐹1𝑖)(𝑥𝑖) + 𝛩∎(𝐹1𝑖)(𝑥𝑖))

2
 

                          𝛿𝛩(𝐹1𝑓)(𝑥𝑖) =
(𝛩∎(𝐹1𝑓)(𝑥𝑖)+𝛩∎(𝐹1𝑓)(𝑥𝑖))

2
and 

𝛿𝛩(𝐹2𝑡)(𝑥𝑖) =
(𝛩∎(𝐹2𝑡)(𝑥𝑖) + 𝛩∎(𝐹2𝑡)(𝑥𝑖))

2
 

𝛿𝛩(𝐹2𝑖)(𝑥𝑖) =
(𝛩∎(𝐹2𝑖)(𝑥𝑖) + 𝛩∎(𝐹2𝑖)(𝑥𝑖))

2
 

𝛿𝛩(𝐹2𝑓)(𝑥𝑖) =
(𝛩∎(𝐹2𝑓)(𝑥𝑖) + 𝛩∎(𝐹2𝑓)(𝑥𝑖))

2
 

Proposition 4.1.2. A RFN fuzzy cosine similarity measure between 𝛩(𝐹1) 𝑎𝑛𝑑  𝛩(𝐹2) satisfies 

the following properties: 

1. 0 ≤ 𝐶𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) ≤ 1 

2. 𝐶𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) = 1 ⟺ 𝛩(𝐹1) = 𝛩(𝐹2) 

3. 𝐶𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) = 𝐶𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) 

If we consider the weight 𝜔𝑖 of each element, 𝑥𝑖 , a weighted RFNcosine similarity measure 

between RFN sets 𝛩(𝐹1) 𝑎𝑛𝑑  𝛩(𝐹2) is defined as follows:  
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𝐶𝑂𝑆𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) =

1

𝑛
∑ 𝜔𝑖

(𝛿𝛩(𝐹1𝑡)(𝑥𝑖)𝛿𝛩(𝐹2𝑡)(𝑥𝑖)+𝛿𝛩(𝐹1𝑖)(𝑥𝑖)𝛿𝛩(𝐹2𝑖)(𝑥𝑖)+𝛿𝛩(𝐹1𝑓)(𝑥𝑖)𝛿𝛩(𝐹2𝑓)(𝑥𝑖))

√(𝛿𝛩(𝐹1𝑡)(𝑥𝑖))2+(𝛿𝛩(𝐹1𝑡)(𝑥𝑖))2+(𝛿𝛩(𝐹1𝑓)(𝑥𝑖))2√(𝛿𝛩(𝐹2𝑡)(𝑥𝑖))2+(𝛿𝛩(𝐹2𝑖)(𝑥𝑖))2+(𝛿𝛩(𝐹2𝑓)(𝑥𝑖))2

𝑛
𝑖=1   

𝜔𝑖 ∈ [0,1], 𝑖 = 1,2,3 … 𝑛 and ∑ 𝜔𝑖
𝑛
𝑖=1 = 1.  If we take 𝜔𝑖 =

1

𝑛
, 𝑖 = 1,2, … . 𝑛 

then𝐶𝑊𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) = 𝐶𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)). 

The weighted RFN cosine similarity measure between two RFN sets 𝛩(𝐹1) 𝑎𝑛𝑑  𝛩(𝐹2) also 

satisfies the following properties: 

Proposition 4.1.3. 

1. 0 ≤ 𝐶𝑊𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) ≤ 1 

2. 𝐶𝑊𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) = 1 ⟺ 𝛩(𝐹1) = 𝛩(𝐹2) 

3. 𝐶𝑊𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) = 𝐶𝑊𝑅𝐹𝑁(𝛩(𝐹1) , 𝛩(𝐹2)) 

 

5. Methodology 

This section explores the application of RFN sets in the realm of medical diagnosis. Specifically, 

within a given medical scenario, F represents the set of symptoms, D denotes the array of diseases, 

and P signifies the cohort of patients manifesting symptoms in S. 

Consider Q as the RFN relation mapping patients to symptoms (P → S), and R as a RFN relation 

mapping symptoms to diseases (S → D). The methodology comprises three primary tasks: 

1. Identifying symptoms. 

2. Formulating medical insights using RFN sets. 

3. Establishing diagnoses. 

 

5.1 Algorithm for RFN Cosine Similarity Measure 

In this section, we present an algorithm of cosine similarity measure in RFN environment to 

diagnose the disease of the patient. Let 𝐹 = {𝑓1, 𝑓2 … … . 𝑓𝑛} be set of symptoms and 𝑃 =

{𝑝1, 𝑝2 … … . 𝑝𝑛}be set of patients and 𝐷 = {𝑑1, 𝑑2 … … . 𝑑𝑛}be set of disease. 

The procedure unfolds as follows: 

1. Gather symptoms exhibited by patients, concurrently establishing the patient-symptom 

relationship denoted as Q. 

2. Derive the relationship R between symptoms and diseases. 

3. Perform computations. 

4. Choose the highest cosine similarity measure value. 

5. Determine that the disease D affects the patients in P. 

 

6. Illustrative Example 

In this section, we provide an illustrative example demonstrating the application of cosine 

similarity measures for RFN sets. 

 

6.1 Example of Rough Fermatean Cosine Similarity Measure 

We consider a practical perspective on a medical diagnosis scenario to clarify the proposed approach. 

Within the field of medical science, the primary objective is the diagnosis of diseases. Therefore, 

medical diagnosis is highly valued as an art dedicated to identifying an individual's pathological 

conditions of the body from all the available symptoms. 
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Let D = {𝑑1, 𝑑2 … … . 𝑑𝑛} represent the set of diseases, F = {𝑓1, 𝑓2 … … . 𝑓𝑛} denote the symptoms, and P 

= {𝑝1, 𝑝2 … … . 𝑝𝑛} represent the set of patients exhibiting symptoms in F. The relationship between 

symptoms and diseases is described in the form of RNF sets. 

Table 1. Relationship between patients and diseases in the form of RNF sets. 

 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 

𝒑𝟏 
(0.8,0.8,0.8), 
(0.8,0.8,0.8) 

(0.7,0.9,0.8), 
(0.8,0.7,0.7) 

(0.7,0.9,0.8), 
(0.8,0.7,0.7) 

(0.9,0.7,0.8), 
(0.9,0.7,0.8) 

𝒑𝟐 
(0.7,0.8,0.8), 
(0.7,0.8,0.8) 

(0.8,0.9,0.7), 
(0.85,0.9,0.65) 

(0.8,0.9,0.7), 
(0.85,0.9,0.65) 

(0.8,0.95,0.7), 
(0.8,0.95,0.7) 

𝒑𝟑 
(0.7,0.8,0.9), 
(0.7,0.8,0.6) 

(0.9,0.8,0.5), 
(0.9,0.8,0.5) 

(0.5,0.4,0.9), 
(0.5,0.4,0.9) 

(0.7,0.8,0.9) 
(0.7,0.8,0.6) 

𝒑𝟒 
(0.6,0.8,0.9), 
(0.9,0.6,0.4) 

(0.7,0.7,0.8), 
(0.7,0.7,0.8) 

(0.9,0.9,0.7), 
(0.9,0.9,0.7) 

(0.6,0.8,0.9) 
(0.9,0.6,0.4) 

 

Table 2. Relationship between patients and symptoms in the form of RNF sets. 

 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 

𝒇𝟏 
(0.6,1,0.7) 
(0.6,1,0.7) 

(0.5,0.8,0.4) 
(0.7,0.5,0.3) 

(0.5,0.8,0.4) 
(0.7,0.5,0.3) 

(0.4,0.1,0.8) 
(0.4,0.1,0.8) 

𝒇𝟐 
(0.4,0.9,0.6) 
(0.4,0.9,0.6) 

(0.3,1,0.8) 
(0.8,0.7,0.8) 

(0.3,1,0.8) 
(0.8,0.7,0.8) 

(0.3,1,0.8) 
(0.8,0.7,0.8) 

𝒇𝟑 
(0.3,0.7,0.7) 
(0.8,0.2,0.4) 

(0.7,0.2,0.4) 
(0.7,0.2,0.4) 

(0.3,0.7,0.7) 
(0.8,0.2,0.4) 

(0.4,0.6,0.7) 
(0.4,0.6,0.7) 

𝒇𝟒 
(0.3,0.8,0.7) 
(0.7,0.2,0.4) 

(0.6,0.5,0.8) 
(0.6,0.5,0.8) 

(0.3,0.7,0.7) 
(0.7,0.2,0.4) 

(0.3,0.7,0.7) 
(0.7,0.2,0.4) 

 

Table 3. Final results. 

 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 

𝒑𝟏 0.5983 0.8877 0.9927 0.9990 

𝒑𝟐 0.9834 0.9771 0.9771 0.9826 

𝒑𝟑 0.9902 0.8405 0.9571 0.9838 

𝒑𝟒 0.9951 0.9910 0.9876 0.9951 

 

From Table 3 we conclude that patient 𝑝1affected by𝑑4, 𝑝2 affected by 𝑑1, 𝑝3affected by 𝑑1 and 

𝑝4 affected by 𝑑1 and 𝑑4. 

 

7. Conclusions 

The concept of uncertainty plays a vital role in all science and engineering problems. Especially, 

Fuzzy theory, Intuitionistic fuzzy theory and then Neutrosophic theory are the most valuable tools 

for finding the optimum solution to medical diagnosis problems. In this work, we include one more 

concept called RFN sets in the list which has Pythagorean Neutrosophic, Single Valued Neutrosophic, 

and Bipolar Neutrosophic graphs. We also apply this new type of set in a decision-making problem. 

We are extending our research on this new concept to introduce rough Interval-valued Fermatean 

Neutrosophic sets and their application in our future work. 
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